单项选择(2023年管理综合

处理餐厨垃圾的传统方式主要是厌氧发酵和填埋,前者利用垃圾产生的沼气发电,投资成本高;后者不仅浪费土地,还污染环境。近日,某公司尝试利用蟑螂来处理垃圾。该公司饲养了3亿只“美洲大”蟑螂,每天可吃掉 15 吨餐厨垃圾。有专家据此认为,用“蟑螂吃掉垃圾”这一生物处理方式解决餐厨垃圾,既经济又环保。

以下哪项如果为真,最能质疑上述专家的观点?

A、餐厨垃圾经发酵转化为能源的处理方式已被国际认可,我国这方面的技术也相当成熟。

B、大量人工养殖后,很难保证蟑螂不逃离控制区域,而一旦蟑螂逃离,则会危害周边生态环境。

C、政府前期在工厂土地划拨方面对该项目给予了政策扶持,后期仍需进行公共安全检测和环境评估。

D、我国动物蛋白饲料非常缺乏,1 吨蟑螂及其所产生的卵鞘,可产生 1吨昆虫蛋白饲料,饲养蟑螂将来盈利十分可观。

E、该公司正在建设新车间,竣工后将能饲养 20 亿只蟑螂,它们虽然能吃掉全区的餐厨垃圾但全市仍有大量餐厨垃圾需要通过传统方式处理。

答案解析

B

讨论

已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:①α//β⇒l⊥m;②α⊥β⇒l//m;③l//m⇒α⊥β;④l⊥m⇒α//β.其中正确的两个命题是【 】

已知m,l是直线,α,β是平面,给出下列命题:①若l垂直于α内的两条相交直线,则l⊥α;②若l平行于α,则l平行于α内的所有直线;③若m⊂α,l⊂β,且l⊥m,则α⊥β;④若l⊂β,且l⊥α,则α⊥β;⑤若m⊂α,l⊂β,且a//β,则m//l.其中正确的命题是序号是 ________(注:把你认为正确的命题的序号都填上)

关于函数f(x)=4 sin⁡(2x+π/3),x∈R,有下列命题:①由f(x1)=f(x2)=0可得x1 - x2必是π的整倍数;②y=f(x)的表达式可改写为y=4 cos⁡(2x-π/6);③y=f(x)的图像关于点(-π/6,0)对称;④y=f(x)的图像关于直线x=-π/6对称.其中正确的命题的序号是 ________,(注:把你认为正确的命题的序号都填上)

α,β是两个不同的平面,m,n是平面α及β之外的两条不同直线.给出四个论断:①m⊥n ②α⊥β ③n⊥β ④m⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________________________________________.

已知sin⁡α>sin⁡β,那么下列命题成立的是【 】

命题A:底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥.命题A的等价命题B可以是:底面为正三角形,且____________________的三棱锥是正三棱锥.

设有不同的直线a,b和不同的平面α,β,γ.给出下列三个命题:①若a//α,b//α,则a//b;②若a//α,a//β,则α//β;③若α⊥β,β⊥γ,则α//β.其中正确的个数是【 】

下列命题中正确的命题是【 】

在空间中,①若四点不共面,则这四点中任何三点都不共线.②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是______(把要求的命题序号都填上)

已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为________________________________.