单项选择(2023年管理综合

某单位采购了一批图书,包括科学和人文两大类。具体情况如下:

(1)哲学类图书都是英文版的:

(2)部分文学类图书不是英文版的:

(3)历史类图书都是中文版的;

(4)没有一本书是中英双语版的;

(5)科学类图书既有中文版的,也有英文版的;

(6)人文类图书既有哲学类的,也有文学类的,还有历史类的。

根据以上信息,关于该单位采购的这批图书,可以得出以下哪项?

A、有些文学类图书是中文版的。

B、有些历史类图书不属于哲学类。

C、英文版图书比中文版图书数量多。

D、有些图书既属于哲学类也属于科学类。

E、有些图既属于文学类也属于历史类。

答案解析

B

讨论

进入移动互联网时代,扫码点餐、在线排号、网购车票、电子支付等智能化生活方式日益普及,人们的生活越来越便捷。然而,也有很多老年人因为不会使用智能手机等设备,无法进入菜场、超市和公园,也无法上网娱乐与购物,甚至在新冠疫情期间因无法从手机中调出健康码而被拒绝乘坐公共交通。对此,某专家指出,社会正在飞速发展,不可能“慢”下来等老年人;老年人应该加强学习,跟上时代发展。以下哪项如果为真,最能质疑该专家的观点?

某中学举行田径运动会,高二(3)班甲、乙、丙、丁、戊、己6 人报名参赛。在跳远、跳高和铅球3项比赛中,他们每人都报名1~2项,其中2人报名跳远,3 人报名跳高,3人报名铅球。另外,还知道:(1)如果甲、乙至少有1人报名铅球,则丙也报名铅球:(2)如果己报名跳高,则乙和已均报名跳远;(3)如果丙、戊至少有1人报名铅球,则已报名跳高。如果甲、乙均报名跳高,则可以得出以下哪项?

某中学举行田径运动会,高二(3)班甲、乙、丙、丁、戊、己6 人报名参赛。在跳远、跳高和铅球3项比赛中,他们每人都报名1~2项,其中2人报名跳远,3 人报名跳高,3人报名铅球。另外,还知道:(1)如果甲、乙至少有1人报名铅球,则丙也报名铅球:(2)如果己报名跳高,则乙和已均报名跳远;(3)如果丙、戊至少有1人报名铅球,则已报名跳高。根据以上信息,可以得出以下哪项?

时时刻刻总在追求幸福的人不一定能获得最大的幸福,刘某说自己获得了最大的幸福,所以,刘某从来不曾追求幸福。以下哪项与上述论证方式最为相似?

某部门抽检了肉制品、白酒、乳制品、干果、蔬菜、水产品、饮料等7类商品共 521 种样品,发现其中合格样品515种,不合格样品6种。已知:(1)蔬菜、白酒中有2种不合格样品;(2)肉制品、白酒、蔬菜、水产品中有 5 种不合格样品;(3)蔬菜、乳制品、千果中有3 种不合格样品。根据上述信息,可以得出以下哪项?

记者:贵校是如何培养创新型人才的?受访者:大学生踊跃创新创业是我校的一个品牌。在相关课程学习中,我们注重激发学生创业的积极性,引导学生想创业;通过实训、体验,让学生能创业;通过学校提供专业化的服务,帮助学生创成业。在高校创业者收益榜中,我们学校名列榜首。以下哪项最可能是上述对话中受访者论述的假设?

处理餐厨垃圾的传统方式主要是厌氧发酵和填埋,前者利用垃圾产生的沼气发电,投资成本高;后者不仅浪费土地,还污染环境。近日,某公司尝试利用蟑螂来处理垃圾。该公司饲养了3亿只“美洲大”蟑螂,每天可吃掉 15 吨餐厨垃圾。有专家据此认为,用“蟑螂吃掉垃圾”这一生物处理方式解决餐厨垃圾,既经济又环保。以下哪项如果为真,最能质疑上述专家的观点?

爱因斯坦思想深刻、思维创新。他不仅是一位伟大的科学家,还是一位思想家和人道主义者,同时也是一位充满个性的有趣人物。他一生的经历表明,只有拥有诙谐幽默、充满个性的独立人格,才能做到思想深刻、思维创新。根据以上陈述,可以得出以下哪项?

甲有两张牌a,b,乙有x,y,甲乙各任取一张牌,则甲取出牌不小于乙取出牌的概率不小于1/2.【 】(1)a > x.(2)a+b>x+y·

设数列{an}的前n项和为Sn.则a2,a3,a4,⋯为等比数列.(1) Sn+1>Sn,n=1,2,3,⋯(2) {Sn}是等比数列.

已知a,b为两条不同的直线,α,β为两个不同的平面且a⊥α,b⊥β,则下列命题的假命题是【 】

已知f(x)=|lgx|-kx-2,给出下列四个结论:(1)若k=0,则f(x)有两个零点; (2) ∃k<0,使得f(x)有一个零点;(3) ∃k<0,使得f(x)有三个零点; (4) ∃k>0,使得f(x)有一个零点.以上正确结论的序号是________.

设有下列四个命题:p1 : 两两相交且不过同一点的三条直线必在同一平面内.p2 : 过空间中任意三点有且仅有一个平面.p3 : 若空间两条直线不相交, 则这两条直线平行.p4 : 若直线 l ⊂ 平面 α, 直线 m ⊥ 平面 α, 则 m ⊥ l.则下列命题中所有真命题的序号是__________.① p1 ∧ p4 ② p1 ∧ p2 ③ ¬p2 ∨ p3 ④ ¬p3 ∨ ¬p4

设a,b是两条异面直线,那么下列四个命题中的假命题是【 】

用计算器验算函数y= (x>1)的若干个值,可以猜想下列命题中的真命题只能是【 】

设f(x),g(x)都是单调函数,有如下四个命题:①若f(x)单调递增, g(x)单调递增,则f(x)-g(x)单调递增;②若f(x)单调递增, g(x)单调递减,则f(x)-g(x)单调递增;③若f(x)单调递减, g(x)单调递增,则f(x)-g(x)单调递减;④若f(x)单调递减, g(x)单调递减,则f(x)-g(x)单调递减;其中,正确的命题是【 】

已知命题p:∃x∈R,sinx<1,命题q:∀x∈R,e|x| ≥1,则下列命题中为真命题的是【 】

设整数n≥100.伊凡把n,n+1,…,2n的每个数写在不同的卡片上.然后他将这n+1张卡片打乱顺序并分成两堆.证明:至少有一堆中包含两张卡片,使得这两张卡片上的数之和是一个完全平方数.

已知函数 f(x) = sinx + 1/sinx, 则【 】① f(x) 的图像关于 y 轴对称;② f(x) 的图像关于原点对称;③ f(x) 的图像关于直线 x = π/2对称; ④ f(x) 的最小值为 2.其中所有真命题的序号是______.

设集合 S, T , S ⊆ N∗, T ⊆ N∗, S, T 中至少有两个元素, 且 S, T 满足:① 对于任意 x, y ∈ S, 若 x≠ y, 都有 xy ∈ T ;② 对于任意 x, y ∈ T , 若 x < y, 则 y/x∈ S. 下列命题正确的是【 】