问答题(2024年英国

Find all functions f from the integers to the integers such that for all integers n:

2f(f(n))=5f(n)-2n

【译】求所有函数f:z→z,使得对任意整数n有:

2f(f(n))=5f(n)-2n

答案解析

暂无答案

讨论

In the sequence 7,76,769,7692,76923,769230,… ,the nth term is given by the first n digits after the decimal point in the expansion of 10/13=0.7692307692⋯.Prove that of the first 60 terms of the sequence, at least 49 have three or more prime factors (repeated prime factors are allowed; for example, 76=2×2×19 has three prime factors).【译】在10/13=0.7692307692⋯的十进制表示中,由小数点后的前n位数构成数列:7,76,769,7692,76923,769230,… ,求证:在该数列的前60项中,至少有49项有三个或以上的素因子(包含重复的素因子,例如76=2×2×19有三个素因子).

设S={z∈C||z|=1}.求所有函数f:S→S,使得f为连续单射,且对任意z1,z2∈S,有f(z1 z2 )=f(z1)f(z2).

复矩阵A与A的任意正整数次常相似.(1)证明:A的特征值为0或 1;(2)求A的若当标准型.

给定素数p和正整数 n(n≥2).A为n个p阶循环群的直和.问:至少需要几个A的真子群,才能使他们的并集能覆盖A?

丘成桐女子赛数列极限

求所有的n∈N*,使得存在n阶实矩阵A,B,满足对任意的n维非零实向量v,Av,Bv线性无关.

函数f:R→R满足,对任意x∈R,存在ε>0使得f在(x-ε,x+ε)上恒等于某个多项式函数,问:f是否一定为多项式函数?

求具有下述性质的最小正数c:对任意整数n≥4以及集合A⊆{1,2,⋯,n},若|A|>cn,则存在函数f:A→{1,-1},满足|∑a∈Af(a)∙a|≤1

设整数n≥4.证明:若n整除2n-2,则(2n-2)/n是合数.

如图所示,在△BC中,M是边AC的中点,D,E是△ABC的外接圆在点A处的切线上的两点,满足MD//AB,且A是线段DE的中点,过A,B,E三点的圆与边AC相交于另一点P,过A,D,P三点的圆与DM的延长线相交于点Q.证明:∠BCQ=∠BAC.

函数y=中,x的取值范围是__________.

函数y=中,x的取值范围是__________.

设函数f(x)的定义域是[0,1],求函数f(x2)的定义域.

设N*表示正整数集,求所有的函数f:N* → N*,使得对任意正整数x,y,均有f(f(x)+y)整除x+f(y).

函数y=/(x+2)的定义域是____________.

设函数f(x)=x2 + x + 1/2的定义域是[n,n+1]( n是自然数),那么f(x)的值域中共有______个整数.

某地为促进淡水鱼养殖业的发展,将价格控制在适当范围内,决定对淡水鱼养殖提供政府补贴.设淡水鱼的市场价格为x元/千克,政府补贴为t元/千克.根据市场调查,当8≤x≤14时,淡水鱼的市场日供应量P千克与市场日需求量Q千克近似地满足关系:P=1000(x+t-8)(x≥9,t≥0),Q=500(8≤x≤14).当P=Q时的市场价格称为市场平衡价格.(1)将市场平衡价格表示为政府补贴的函数,并求出函数的定义域;(2)为使市场平衡价格不高于每千克10元,政府补贴至少为每千克多少元?

已知映射f:A→B,其中,集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中元素在映射f下的象,且对任意的a∈A,在B中和它对应的元函数是|a|则集合B中元素的个数是【 】

已知函数y=f(x)的图像是自原点出发的一条折线.当n≤y≤n+1(n=0,1,2⋯)时,该图像是斜率为bn的线段(其中正常数b≠1),设数列{xn }由f(xn)=n(n=1,2⋯)定义.(Ⅰ)求x1,x2和xn的表达式;(Ⅱ)求f(x)的表达式,并写出其定义域;(Ⅲ)证明:y=f(x)的图像与y=x的图像没有横坐标大于1的交点.

设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是【 】