问答题(1995年全国统考

某地为促进淡水鱼养殖业的发展,将价格控制在适当范围内,决定对淡水鱼养殖提供政府补贴.设淡水鱼的市场价格为x元/千克,政府补贴为t元/千克.根据市场调查,当8≤x≤14时,淡水鱼的市场日供应量P千克与市场日需求量Q千克近似地满足关系:

P=1000(x+t-8)(x≥9,t≥0),

Q=500(8≤x≤14).

当P=Q时的市场价格称为市场平衡价格.

(1)将市场平衡价格表示为政府补贴的函数,并求出函数的定义域;

(2)为使市场平衡价格不高于每千克10元,政府补贴至少为每千克多少元?

答案解析

(1)依题设有1000(x+t-8)=500,化简得x2+(8t-80)x+(4t2-64t+280)=0.当判别式∆=800-16t2≥0时,可得x=8-4/5 t±2/5 .由∆≥0,t≥0,8≤x≤14,得不等式组:① ② 解不等式组①,得0...

查看完整答案

讨论

已知一企业一年营业额1.1亿元,每年增加0.05亿元,利润0.16亿元,每年增长4%.(1)求营业额前20季度的和.(2)请问哪年哪季度营业额是利润的18%?

已知x1,x2∈R,若对任意的x2-x1∈S,f(x2 )-f(x1)∈S,则有定义:f(x)是S关联的.(1)判断和证明f(x)=2x-1是否在[0,+∞)关联?是否有[0,1]关联?(2)若f(x)是在{3}关联的,在x∈[0,3)时f(x)=x2-2x,求解不等式:2≤f(x)≤3.(3)证明:f(x)是{1}关联的,且是在[0,+∞)关联的,当且仅当“f(x)在[1,2]是关联的”.

求函数y=的定义域,并在数轴上表示出来.

求函数y=arcsin x/3的定义域,并在数轴上表示出来.

某工厂今年七月份的产值为100万元,以后每月产值比上月增加20%,问今年七月份到十月份总产值是多少?

已知函数f(x)=,则f(f(1/2))=________;若当x∈[a,b]时,1≤f(x)≤3,则b-a的最大值是_________.

已知函数f(x)的定义域为[0,+∞),且满足f(x)=f(1/(1+x)),记函数的值域为Af,若a>0,满足{y│y=f(x),x∈[0,a] }=Af,则实数a的取值范围为__________.

Let R+ denote the set of positive real numbers. Find all functions f:R⟶R such that for each x∈R+, there is exactly one y∈R+ satisfying:xf(y)+yf(x)≤2.译文:设R+表示所有正实数构成的集合.求所有函数f:R+→R+,使得对任意x∈R+,恰好有一个y∈R+满足条件:xf(y)+yf(x)≤2.

设函数f(x)=,若f(x0)>1,则x0的取值范围是【 】

定义函数f(x)代表|x|-2与x2-ax+3a-5中较小的数.若f(x)至少有3个零点,则a的取值范围为__________.