计算题(1946年四川大学

解2x³-3x²-3x+2=0

答案解析

暂无答案

讨论

设二次函数f(x)=ax2+bx+c(a>0),方程f(x) - x=0的两个根x1,x2满足0<x1<x2<1/a.(Ⅰ)当x∈(0,x1 )时,证明x<f(x)<x1;(Ⅱ)设函数f(x)的图像关于直线x=x0对称,证明x0<x1/2.

根据指令(r,θ)(r≥0,-180°<θ≤180°),机器人在平面上能完成下列动作:先原地旋转角度θ(θ为正时,按逆时针方向旋转θ;θ为负时,按顺时针方向旋转-θ),再朝其面对的方向沿直线行走距离r.(I)现机器人在直角坐标系的坐标原点,且面对x轴正方向.试给机器人下一个指令,使其移动到点(4,4).(Ⅱ)机器人在完成该指令后,发现在点(17,0)处有小球正向坐标原点做匀速直线滚动.已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令(结果精确到小数点后两位).

设a∈R,函数f(x)=,若f(x)在区间(0,+∞)内恰好有6个零点,则a的取值范围是【 】

红旗大队粮食产量逐年增加,1973年产量为90万斤,连续三年平均每年比前一年增产10%,这个大队从1973年到1976年总共生产粮食多少万斤?(精确到0.1)

已知2lgx+lg2=lg⁡(x+6),求x.

求等式=125中x的值.

解方程:1/(x-1)+1=(4x-2)/(x2 - 1).

解方程lg(x-5)+lg(x+3)-2lg2=lg(2x-9).

解方程组并讨论a取哪些实数时,方程组(1)有不同的两实数解;(2)有相同的两实数解;(3)没有实数解.

方程(x2006+1)(1+x2+x4+⋯+x2004 )=2006x2005的实数解的个数为__________.

某电管所为实现农业现代化,加強电力网的建设,沿着一条通往农村的新公路栽电线杆,已知一辆汽车每次从电管所运3根电线杆,相邻两根电线杆的距离为50米,汽车往返的总行程是35.5公里,最后一根电线杆与电管所的距离是2450米.(1)问第一根电线杆与电管所的距离是多少?(2)共栽了多少根电线杆?

某工厂今年七月份的产值为100万元,以后每月产值比上月增加20%,问今年七月份到十月份总产值是多少?

某工厂第三年产量比第一年增长21%,问平均每年比上一年增长百分之几?又第一年的产量是第三年的产量的百分之几?(精确到1%)

函数y=(3x-3-x) cos⁡x在区间[-π/2,π/2]的图像大致为【 】

已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则f(k)【 】

如图是下列四个函数中的某个函数在区间[-3,3]的大致图像,则该函数是【 】

在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和lg⁡P的关系,其中T表示温度,单位是K;P表示压强,单位是 .下列结论中正确的是【 】

函数f(x)=1/x+的定义域是_________.

设函数f(x)=若f(x)存在最小值,则a的一个取值为________;a的最大值为___________.

已知函数f(x)=,则f(f(1/2))=________;若当x∈[a,b]时,1≤f(x)≤3,则b-a的最大值是_________.