问答题(2023年丘成桐女子赛

设S={z∈C||z|=1}.求所有函数f:S→S,使得f为连续单射,且对任意z1,z2∈S,有f(z1 z2 )=f(z1)f(z2).

答案解析

暂无答案

讨论

《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额。此项税款按下表分段累进计算:全月应纳税所得额 税率不超过500元的部分 5%超过500元至2000元的部分 10%超过2000元至5000元的部分 15%… …某人1月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于【 】

某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系用图(左)的一条折线表示;西红柿的种植成本与上市时间的关系用图(右)的抛物线段表示.(I) 写出图(左)表示的市场售价与时间的函数关系式P=f(t);写出图(右)表示的种植成本与时间的函数关系式Q=g(t);(II) 认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg,时间单位:天)

设集合A和B都是坐标平面上的点集{(x,y)|x∈R,y∈R},映射f:A→B把集合A中的元素(x,y)映射成集合B中的元素(x+y,x-y),则在映射f下,象(2,1)的原象是【 】

函数y=log2 (2x-1)/(3-x)的定义域为__________.

从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投人将比上年减少1/5.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加1/4.( I )设n年内(本年度为第一年)总投人为an万元,旅游业总收人为bn万元.写出an,bn的表达式.(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?

设函数f(x)=,则满足f(x)=1/4的x值为______.

用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量1/2,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上,设用x单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数f(x).( I )试规定f(0)的值,并解释其实际意义.(Ⅱ)试根据假定写出函数f(x)应该满足的条件和具有的性质.(Ⅲ)设f(x)=1/(1+x2 ).现有a(a>0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.

已知一企业一年营业额1.1亿元,每年增加0.05亿元,利润0.16亿元,每年增长4%.(1)求营业额前20季度的和.(2)请问哪年哪季度营业额是利润的18%?

已知x1,x2∈R,若对任意的x2-x1∈S,f(x2 )-f(x1)∈S,则有定义:f(x)是S关联的.(1)判断和证明f(x)=2x-1是否在[0,+∞)关联?是否有[0,1]关联?(2)若f(x)是在{3}关联的,在x∈[0,3)时f(x)=x2-2x,求解不等式:2≤f(x)≤3.(3)证明:f(x)是{1}关联的,且是在[0,+∞)关联的,当且仅当“f(x)在[1,2]是关联的”.

已知a∈R,函数f(x)=,若f[f(√6)]=3,则a=__________.