设S={z∈C||z|=1}.求所有函数f:S→S,使得f为连续单射,且对任意z1,z2∈S,有f(z1 z2 )=f(z1)f(z2).
复矩阵A与A的任意正整数次常相似.(1)证明:A的特征值为0或 1;(2)求A的若当标准型.
给定素数p和正整数 n(n≥2).A为n个p阶循环群的直和.问:至少需要几个A的真子群,才能使他们的并集能覆盖A?
求所有的n∈N*,使得存在n阶实矩阵A,B,满足对任意的n维非零实向量v,Av,Bv线性无关.
函数f:R→R满足,对任意x∈R,存在ε>0使得f在(x-ε,x+ε)上恒等于某个多项式函数,问:f是否一定为多项式函数?
求具有下述性质的最小正数c:对任意整数n≥4以及集合A⊆{1,2,⋯,n},若|A|>cn,则存在函数f:A→{1,-1},满足|∑a∈Af(a)∙a|≤1
对任意不等于1的正数a,函数f(x)=loga( x+3)的反函数的图像都经过点P,则点P的坐标为______.
在下列各图中,y=ax2+bx与y=ax+b (ab≠0)的图像只能是【 】
设对所有实数x,不等式x2log2 4(a+1)/a+2xlog2 2a/(a+1)+log2 (a+1)2/(4a2)>0恒成立,求a的取值范围.
已知函数f(x)=cosαx-ln(1-x²),若x=0是f(x)的极大值点,求α的取值范围.
设a>0,a≠1,t>0,比较1/2logat与loga (t+1)/2的大小,并证明你的结论.
给定实数a,a≠0,a≠1,设函数y=(x-1)/(ax-1)(x∈R,x≠1/a).证明:(Ⅰ)经过这个函数图像上任意两个不同的点的直线不平行于x轴;(Ⅱ)这个函数的图像关于直线y=x成轴对称图形.