问答题(2021年全国乙·理2021年全国乙·文

已知函数f(x)=|x-a|+|x+3|.

(1)当a=1时,求不等式f(x)≥6的解集;

(2)若f(x)>-a,求a的取值范围.

答案解析

(1) 当a=1时,f(x)=|x-1|+|x+3|,|x-1|+|x+3|表示数轴上的点到1和-3的距离之和,f(x)≥6表示数轴上的点到1和-3的距离之和不小于6,解得x≤4或x≥2,所以f(x)≥6的解集为(-∞,-4]∪[2,+∞)...

查看完整答案

讨论

在直角坐标系xOy中,⨀C的圆心为C(2,1),半径为1.(1)写出⨀C的一个参数方程;(2)过点F(4,1)作⨀C的两条切线,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.

已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离最小值为4.(1)求p;(2)若P在M上,PA,PB是C的两切线,A,B是切点,求△PAB面积的最大值.

设函数f(x)=ln⁡(a-x),已知x=0是函数y=xf(x)的极值点.(1)求a;(2)设函数g(x)=(x+f(x))/(xf(x)).证明:g(x)<1.

记Sn为数列{an}的前n项和,bn为数列{Sn}的前n项积,已知2/Sn +1/bn =2.(1)证明:数列{bn}是等差数列;(2)求{an}的通项公式.

如图,四棱锥P-ABCD 的底面是矩形,PD⊥底面ABCD,PD = DC = 1,M 为 BC 的中点,且 PB⊥AM.(1) 求 BC;(2) 求二面角A-PM-B的正弦值.

某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了 10 件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x ̅ 和 y ̅,样本方差分别记为S12和S22.(1) 求x ̅ , y ̅ , S12,S22;(2) 判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y ̅ - x ̅ ≥2,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高 ).

以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为______ ( 写出符合要求的一组答案即可).

记△ABC的内角A,B,C的对边分别为a,b,c,面积为,B=60°,a2+c2=3ac,则b=______.

已知向量=(1,3),=(3,4),若(-λ)⊥,则λ=________.

已知双曲线x2/m - y2=1(m>0)的一条渐近线为 x+my=0,则C的焦距为________.