问答题(2022年7月国际数学奥林匹克

Find all the groups of positive integers (a,b,p) satisfying p is a prime number and ap=b!+p.

译文:

求所有正整数组(a,b,p),满足:p为素数且ap=b!+p.

答案解析

(1)若b<p,则(b!,p)=1,于是1~b中质数均不整除b!+p,从而a>b,于是ap-p≥(b+1)p-p>bp>b!,矛盾,故b≥p,p|(b!+p),即p|a.又p>1,所以vp (b!)=1,从而b<2p.(2)若 a≠p,则(a/p)p pp-1=[1+(p-1)(p+1)⋯b],从而(a/p,(p-1)!)=1,从而a/p≥p.但b!+p≤(2p-1)!+p<(2p∙1)(2p∙2)⋯[(p+1)(p-1)]<(p2 ...

查看完整答案

讨论

Suppose a convex pentagon ABCDE such that BC=DE.If there exists a point T inside ABCDE suchthat TB=TD TC=TE and ∠ABT=∠TEA. AB meet CD and CT at point P and Q respectively, withP,B,A,Q in this order on the same line. AE meet CD and DT at point R and S respectively, with R,E,A,S in this order on the same line.Prove that P,S,Q,R are on the same circle.译文:设凸五边形ABCDE满足BC=DE.若在ABCDE内存在一点T使得TB=TD,TC=TE且∠ABT= ∠TEA.直线AB分别与直线CD和CT交于点P和Q,且P,B,A,Q在同一直线上按此顺序排列;直线AE分别与直线CD和DT交于点R和S,且R,E,A,S在同一直线上按此顺序排列.证明:P,S,Q,R 四点共圆.

Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that there is at most one way (up to rotation and refection) to place the elements of S around a circle such that the product of any two neighbours is of the form x2+x+k for some positive integer x. 译文:给定正整数 k,S是一个由有限个奇素数构成的集合.证明:至多只有一种方式(旋转或对称后相同视为同种方式)可以将S中的元素排成一个圆周,且满足任意两个相邻元素的乘积均可以写成x2+x+k的形式 (其中x为正整数) .

Let R+ denote the set of positive real numbers. Find all functions f:R⟶R such that for each x∈R+, there is exactly one y∈R+ satisfying:xf(y)+yf(x)≤2.译文:设R+表示所有正实数构成的集合.求所有函数f:R+→R+,使得对任意x∈R+,恰好有一个y∈R+满足条件:xf(y)+yf(x)≤2.

The Bank of Oslo issues two types of coin:aluminium(denoted A) and bronze(denoted B). Marianne has n aluminium coins and n bronze coins, arranged in a row in some arbitrary initial order.A chain is any subsequence of consecutive coins of the same type.Given a fixed positive integer k<2n, Marianne repeatedly performs the following operation:she identifies the longest chain containing the kth coin from the left and moves all coins in that chain to the left end of the row.For example, if n = 4 and k=4 the process starting from the ordering AABBBABA would beAABBBABA→BBBAAABA→AAABBBBA→BBBBAAAA.Find all pairs (n, k) with 1 ≤ k ≤2n such that for every initial ordering at some moment during the process,the leftmost n coins will all be of the same type. 译文:奥斯陆银行发行了两种货币:铝币(记为A)和铜币(记为B).玛丽安有n枚铝币和n枚铜币,以任意初始方式排成一排。定义一条链为任意由相同类型货币构成的连续子列。给定正整数k<2n,玛丽安重复地进行如下操作:她找出包含(从左到右)第k枚硬币的最长链,然后把该链中所有货币移到序列最左端。例如,n=4,k=4时,对于初始序列 AABBBABA,过程如下:AABBBABA→BBBAAABA→AAABBBBA→BBBBAAAA.求所有满足1≤k≤2n的数组(n,k),使得对任意初始序列,都可以在有限次操作内使左端为n枚相同的货币。

数列{an}中,a1=1,a2=3,若地任意n(n≥2)都存在正整数i(1≤i≤n-1)使得an+1=2an-ai.(1)求a4的所有可能值.(2)命题p:若a1,a2,a3,…,a8成等差数列,则a9<30,证明命题p为真;写出p的逆命题q,并判断q的真假,若命题q为真则证明,若命题q为假,请举出反例.(3)若对任意正整数m,a2m=3m,求数列{an}的通项公式.

已知Γ:x2/a2 +y2/b2 =1(a>b>0)的左、右焦点分别为F1 (-√2,0),F2 (√2,0),A为Γ的下顶点,M为直线l:x+y-4√2=0上一点.(1)若a=2,AM的中点在x轴上,求点M的坐标;(2)直线l交y轴于点B,直线AM经过点F2,若△ABM有一个内角的余弦值为3/5,求b;(3)若椭圆Γ上存在点P到直线l的距离为d,且满足d+|PF1 |+|PF2 |=6,当a变化时,求d的最小值.

如图,AD=BC=6,AB=20,∠ABC=∠DAB=120°,O为AB中点,曲线CMD上所有的点到O的距离相等,MO⊥AB,P为曲线CM上的一动点,点Q与点P关于OM对称.(1)若P在点C的位置,求∠POB的大小; (2)求五边形MQABP面积的最大值.

已知f(x)=log3(x+a)+log3(6-x).若将函数y=f(x)的图像向下平移m(m>0)个单位,经过点(3,0),(5,0),求a与m的值;若a>-3且a≠0,解关于x的不等式f(x)≤f(6-x).

如图所示三棱锥,底面为等边△ABC,O为AC中点,PO⊥平面ABC,AP=AC=2.(1)求三棱锥P-ABC的体积;(2)若M为BC中点,求PM与平面PAC所成角的大小.

已知平面直角坐标系中的点集Q={(x,y)|(x-k)2+(y-k2)2=4|k,k∈z}.①存在直线l与Q没有公共点,且Q中存在两点在l的两侧;②存在直线l经过Q中的无数个点则【 】

对任意一个非零复数z,定义集合Mz={ω|ω=z2n-1,n∈N}.(Ⅰ)设α是方程x+1/x=的一个根,试用列举法表示集合Mα,若在Mα中任取两位数,求其和为零的概率P;(Ⅱ)设复数ω∈Mz,求证Mω⊆Mz.

设整数m≥2.设集合A由有限个整数(不一定为正)构成,且B1,B2,…,Bm是A的子集.假设对任意k=1,2,…,m,Bk中所有元素之和为mk.证明:A包含至少m/2个元素.

若集合A={1,2,m},其中m为实数.令B={a²|a∈A},C=A∪B.若C的所有元素之和为6,则C的所有元素之积为________.

某校举办数学文化节,据统计当天共有980多(不少于980,小于990)名同学进校参观,每位同学进校参观一段时间后离开(之后不会再进来).若无论这些同学以怎样的时间安排参观,我们都能找到k位同学,使得要么这k位同学在某个时间都在校园内参观,要么任何时间他们中都没有两个人同时在校园内参观.求k的最大值.

S是集合{1,2,…,2023}的子集,满足任意两个元素的平方和不是9的倍数,则|S|的最大值是______(这里|S|表示S的元素个数).

323 与 221 之最大公约数为______.

设a,b是正整数,证明:在区间[b2/(a2+ab),b2/(a2+ab-1))上不存在正整数.

求具有下述性质的最小正数c:对任意整数n≥4以及集合A⊆{1,2,⋯,n},若|A|>cn,则存在函数f:A→{1,-1},满足|∑a∈Af(a)∙a|≤1

Given a positive integer n, a set S is n-admissible if①each element of S is an unordered triple of integers in {1,2,⋯,n},②|S|=n-2,and③for each 1≤k≤n-2 and each choice of k distinct A1,A2,⋯,Ak∈S,|A1∪A2∪⋯∪Ak |≥k+2Is it true that, for all n>3 and for each n-admissible set S, there exist pairwise distinct points P1,P2,⋯,Pn in the plane such that the angles of the triangle Pi Pj Pk are all less than 61° for any triple {i,j,k} in S?【译】给定正整数n,称集合S是n-可行,如果其满足以下条件:①S的每个元素都是{1,2,⋯,n}的三元子集;②|S|=n-2;③对任意的1≤k≤n-2和任意k个互不相同的A1,A2,⋯,Ak∈S,都有|A1∪A2∪⋯∪Ak |≥k+2判断以下命题是否为真:对所有n>3和所有的n-可行集合S,在平面内总存在n个互不相同的点P1,P2,⋯,Pn,使得对集合S中任意元素{i,j,k},三角形Pi Pj Pk的每个内角都小于61°.

The real numbers a,b,c,d are such that a≥b≥c≥d>0 and a+b+c+d=1.Prove that (a+2b+3c+4d)aabbccdd<1.设实数a、b、c、d满足 a≥b≥c≥d>0 ,且 a+b+c+d=1 . 证明:(a+2b+3c+4d)aabbccdd<1.(比利时供题)