计算题(1917年北京大学

试分 ab(x²- y²)+ xy (a²-b²)为因数.

答案解析

暂无答案

讨论

某日温度华氏与摄氏之比若 13:4,问华氏几度?

直角三角形内切圆之直径与斜边之和等于其他二边之和.

自等边三角形底边上任意一点,引他二边之平行线,所得平行四边形之周围有一定之长.

试解方程式x2-x+72/(x2-x)=18

北京大学解方程

有酒两种,甲种4升与乙种5升价值之比若 6:7,今甲种4升瓶 26 瓶之价为13元,问乙种 3升瓶 28 瓶该价若干?

鸡犬共若干只,足数共三百二十,而鸡之头数为犬之头数之七分之二,问鸡犬各有几只.

定义椭圆x2/a2 +y2/b2 =1的辅助圆为x2+y2=a2.考虑椭圆x2/4+y2/3=1,点H(a,0),0<a<2. 在第一象限内,过H平行于y轴的直线与椭圆交于点E,与椭圆的辅助圆交于点F,椭圆在点E处的切线与x轴正半轴交于点G,过原点和F的直线与x轴正半轴的夹角为φ.列Ⅰ 列Ⅱ(Ⅰ)若φ=π/4,则△FGH的面积为 (P) (√3-1)4/8(Ⅱ)若φ=π/3,则△FGH的面积为 (Q) 1(Ⅲ)若φ=π/6,则△FGH的面积为 (R) 3/4(Ⅳ)若φ=π/12,则△FGH的面积为 (S) 1/(2√3) (T) (3√3)/2正确的选项为【 】

非零实数p,q,r分别为调和数列的第10、第100和第1000项,考虑线性方程组列Ⅰ 列Ⅱ(Ⅰ)若q/r=10,则方程组 (P) 有解x=0,y=10/9,z=-1/9(Ⅱ) 若p/r≠100,则方程组 (Q) 有解x=10/9,y=-1/9,z=0(Ⅲ) 若p/q≠10,则方程组 (R) 无穷多解(Ⅳ) 若p/q=10,则方程组 (S) 无解 (T)至少1个解正确的选项为【 】

假设P1,P2两人进行比赛,每回合两人分别投掷一枚均匀的骰子,设x,y分别为P1,P2投出的点数,若x>y,记P1得5分,P2得0分;若x=y,记P1,P2均得2分;若x<y,记P1得0分,P2得5分.设Xi,Yi分别为第i回合后P1,P2的总得分.列Ⅰ 列Ⅱ(Ⅰ)P(X2≥Y2 )= (P) 3/8(Ⅱ)P(X2>Y2 )= (Q) 11/16(Ⅲ)P(X3=Y3 )= (R) 5/16(Ⅳ)P(X3>Y3 )= (S) 355/864 (T) 77/432正确的选项为【 】

设x为实数,试证:(x²-6x+5)/(x²+2x+1)之值不小于-1/3.

试分解(x²+x-3)/(x-1)(x-2)(x-3)为最简部分分式.

将f(x)=x³-3x²+5x+6的根增一常数 ,使变后的方程缺x²项.

试从x=by+cz,y=cz+ax,z=ax+by,消去x,y,z.求a,b,c间的关系式.

化(5x²-4x+16)/((x²-x+1)²(x-3))为部分分式.

求下式之部分分式(2x+3)/((x-2)(x²+3)).

分解(x2-2x+5)/(x4-4x3+5x2-4x+4)为最简部分分式.

设 A,B 为 x 的两个有理整式,请用辗转相除法说明并证明何种情况为互质,何种情况下有公因式.有公因式时,说明求最高公因式之方法并证明之.

A polynomial P with integer coefficients is square-free if it is not expressible in the form P=Q² R, where Q and R are polynomials with integer coefficients and Q is not constant. For a positive integer n, let Pn be the set of polynomials of the form1+a1 x+a2 x²+⋯+an xnwith a1,a2,⋯,an∈{0,1}. Prove that there exists an integer N so that, for all integers n>N, more than 99% of the polynomials in Pn are square-free.【译】我们称整系数多项式P是无平方因子的,如果其不能表示为P=Q² R的形式,这里Q,R为整系数多项式且Q不为常数.对于正整数n,记Pn为如下 形式的多项式组成的集合:1+a1 x+a2 x²+⋯+an xn这里a1,a2,⋯,an∈{0,1}.证明:存在整数N,使得对任意的整数n≥N,Pn中超过99%的多项式都是无平方因子的.

有理数加群(Q,+),记所有分母不超过10的有理数构成的子集为G,其对应的陪集GZ记为G ̅,则Q/Z包含G ̅的最小子群的阶为______.