曲线xy=a²上一切线与坐标轴成一三角形,求此三角形的面积.
求1的三次根(实根和虚根),证:任一虚根的平方等于另一虚根,且((-1+i√3)/2)n+((-1-i√3)/2)n=-1,式中n为整数,唯不能为3的倍数.
若(x+b)(x+c)+(x+c)(x+a)+(x+a)(x+b)为含x的整平方式,则a=b=c.
若下式(x+p)(x+2q)+(x+2p)(x+q)为含有x的整平方式,则9p²-14pq+9q²=0.
A,B,C 为三定点,求作一圆过 A,B,使从 C 到此圆的切线等于定长.
在△ABC的边AB,AC上各取D,E点,使AD=1/3 AB,AE=1/3 AC,连结BE,CD相交于F点.求证:S△FBC=1/2 S△ABC.
在 1,2,···,99,100 一百个数内任意选出五十一个数,证明在此五十一个数内恒可以找到二个数,其中一个数为另一个数的倍数.
若A+B+C =nπ (n 为整数).求证:sin2A + sin2B + sin2C = (-1)n-1 · 4sinA · sinB · sinC
已知△ABC,若对任意t∈R,|(BA)→-t(BC)→ |≥|(AC)→|,则△ABC一定为【 】。
已知△ABC中,点D在边BC上,∠ADB=120°,AD=2,CD=2BD.当AC/AB取得最小值时,BD=________.
函数f(x)=a-√3tan2x在闭区间[-π/6,b]上的最大值为7,最小值为3,则a×b的值为【 】
设A,B,C与a,b,c依次为一三角形之三角与三边,试证a/(b+c)=
英:Show how to describe a triangle having given its angles and its perimeter.汉:己知三角形三角及周长,解此三角形.
A,B,C are the angles of a triangle, prove that tanA+tanB+tanC=tanAtanBtanC.
一条直线过点(1,-3),并且与直线2x+y-5=0平行,求这条直线的方程.
在△ABC中,点D在边AB上,BD=2DA.记=m,=n,则=【 】
已知a→=(3,4),b→=(1,0),c→=a→+tb→,若<a→,c→>=<b→,c→>,则t=【 】
已知点A(-2,3),B(0,a),若直线AB关于y=a的对称直线与圆(x+3)2+(y+2)2=1存在公共点,则实数a的取值范围为________.
设向量a,b的夹角的余弦值为1/3,且|a|=1,|b|=3,则(2a+b)⋅b=_________.
已知椭圆C:x2/a2 +y2/b2 =1(a>b>0)的离心率为1/3,A1,A2分别为C的左、右顶点,B为C的上顶点.若(BA1)⋅(BA2)=-1,则C的方程为【 】
已知向量a=(m,3),b=(1,m+1).若a⊥b,则m=__________.
记双曲线C:x2/a2 -y2/b2 =1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值_________.
双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的两支交于M,N两点,且cos∠F1NF2=3/5,则C的离心率为【 】
在∆ABC中,(CA)→=a,(CB)→=b,D是AC的中点,(CB)→=2(BE)→,试用a,b表示(DE)→=________;若(AB)→⊥DE→,求∠C的最大值为______.