设n为正整数.若平面中存在两点A,B及2024个不同的点P1,P2,⋯,P2024满足:线段AB及各条线段APi,BPi (i=1,2,⋯,2024)的长度均为不超过n的正整数,求n的最小值.
设n为正整数.若平面中存在两点A,B及2024个不同的点P1,P2,⋯,P2024满足:线段AB及各条线段APi,BPi (i=1,2,⋯,2024)的长度均为不超过n的正整数,求n的最小值.
解答过程见word版
求最大的正整数n,使得平面上存在n个点P1,P2,⋯,Pn(任意三点不共线)和不过其中任意点的n条直线l1,l2,⋯,ln(任意三线不共点),满足对任意i≠j,直线Pi Pj,li,lj三线共点.
在平面直角坐标系xOy中,椭圆x²/a² +y²/b² =1(a>b>1)的右焦点为F(c,0),若存在经过焦点F的一条直线l交椭圆于A,B两点,使得OA⊥OB.求椭圆的离心率e=c/a的取值范围.
设a,b,c,d∈(0,1),满足a²+b²+c²+d²=3,证明:(1-a²)/(b+c)+(1-b²)/(c+d)+(1-c²)/(d+a)+(1-d²)/(a+b)<2/3.
求方程(√3+2sin2x)/(√3+2sinx)=√3 sinx+cos2x/2cosx在(0,π/2)内的解.
在锐角三角形△ABC中,AB>AC,O为外心. 设D为BC上一点,O1,O2分别为△ABD,△ACD的外心,△AO1O2的外接圆与⨀O交于不同于A的点L.证明:A,O,D三点共线当且仅当AL//BC.
设函数f(x)=(x+a)ln(x+b),若f(x)≥0,则a²+b²的最小值为【 】
已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).当a=1/2时,求函数f(x)的最小值.
已知函数f(x)=2x3-9x2+ax+5在x=1处取得极大值,在x=b处取得极小值,则a+b的值为【 】
Find the maximum value of (7-x)4 (2+x)6 when x lies between 7 and 2.
Find the maximum value of (5+x)(2+x)/(1-x).
设函数f(x)=a(x+1)²-1,g(x)=cosx+2ax,当x∈(-1,1)时,曲线y=f(x)与y=g(x)恰有一个交点,则a=【 】
某工厂今年七月份的产值为100万元,以后每月产值比上月增加20%,问今年七月份到十月份总产值是多少?
某工厂第三年产量比第一年增长21%,问平均每年比上一年增长百分之几?又第一年的产量是第三年的产量的百分之几?(精确到1%)
解方程组并讨论a取哪些实数时,方程组(1)有不同的两实数解;(2)有相同的两实数解;(3)没有实数解.
方程(x2006+1)(1+x2+x4+⋯+x2004 )=2006x2005的实数解的个数为__________.
已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则f(k)【 】
设函数f(x)=若f(x)存在最小值,则a的一个取值为________;a的最大值为___________.
已知函数f(x)=,则f(f(1/2))=________;若当x∈[a,b]时,1≤f(x)≤3,则b-a的最大值是_________.
已知函数f(x)的定义域为[0,+∞),且满足f(x)=f(1/(1+x)),记函数的值域为Af,若a>0,满足{y│y=f(x),x∈[0,a] }=Af,则实数a的取值范围为__________.