设函数f(x)=a(x+1)²-1,g(x)=cosx+2ax,当x∈(-1,1)时,曲线y=f(x)与y=g(x)恰有一个交点,则a=【 】
A、-1
B、1/2
C、1
D、2
设函数f(x)=a(x+1)²-1,g(x)=cosx+2ax,当x∈(-1,1)时,曲线y=f(x)与y=g(x)恰有一个交点,则a=【 】
A、-1
B、1/2
C、1
D、2
D
【解析】
解答过程见word版
已知函数f(x)=x(1-lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna-alnb=a-b,证明:2<1/a+1/b<e.
已知函数 和g(x)=ax-lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
若函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)f(y),f(1)=1,则f(k)=【 】
设函数f(x)=cosx+log2x (x>0),若正实数a满足f(a)=f(2a),则f(2a)-f(4a)=________.
函数f:R→R满足,对任意x∈R,存在ε>0使得f在(x-ε,x+ε)上恒等于某个多项式函数,问:f是否一定为多项式函数?
F(x)=(1+)f(x)(x≠0)是偶函数,且f(x)不恒等于零,则f(x)【 】
已知函数f(x)=x3(a∙2x - 2-x)是偶函数,则a=__________.
记f(x)是定义域为R的奇函数,且f(1+x)=f(-x),若f(-1/3)=1/3,则f(5/3)=【 】
设函数f(x)=(1-x)/(1+x),则下列函数中为奇函数的是【 】
已知函数f(x)及其导函数 的定义域均为R,记g(x)=f' (x),若f(3/2-2x),g(2+x)均为偶函数,则【 】
已知函数f(x)的定义域为R,f(xy)=y²f(x)+x²f(y),则【 】
若f(x)=(x+a)ln(2x-1)/(2x+1)为偶函数,则a=【 】
设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b,若f(0)+f(3)=6,则f(9/2)=【 】