证明题(2024年东南地区奥林匹克

设a,b,c,d∈(0,1),满足a²+b²+c²+d²=3,证明:

(1-a²)/(b+c)+(1-b²)/(c+d)+(1-c²)/(d+a)+(1-d²)/(a+b)<2/3.

答案解析

解答过程见word版

讨论

证明:存在有理数集Q的无限子集A和B,同时满足以下三个条件:(ⅰ) A∪B=Q,A∩B=∅;(ⅱ) ∀x,y∈A⟹xy∈B,∀x,y∈B⟹xy∈B;(ⅲ) ∀n∈Z,(n,n+1)∩A≠∅,(n,n+1)∩B≠∅.

一项考试的可能得分为0,1,2,⋯,150,有100名考生P1,P2,⋯,P100,考完后依顺时针围成一圈交流成绩,记Pi的成绩为ai.每个考生Pi比较自己与相邻两人Pi-1,Pi+1(下标按模100理解 )的得分,定义Pi的激励值fi为:fi=记S=f1+f2+⋯+f100.(1)求S的最大值;(2)求使得f1,f2,⋯,f100两两不相等的S的最大值.

设a正整数,fa (x)=x4+ax²+1.定义集合Pa={p|p为素数,且存在正整数k使得fa (2k)是p的倍数}(1)证明:对任意正整数a,Pa为无限集;(2)若Pa的任意两个元素之差是8的倍数,求正整数a的最小值.

求方程(√3+2sin2x)/(√3+2sinx)=√3 sinx+cos2x/2cosx在(0,π/2)内的解.

在锐角三角形△ABC中,AB>AC,O为外心. 设D为BC上一点,O1,O2分别为△ABD,△ACD的外心,△AO1O2的外接圆与⨀O交于不同于A的点L.证明:A,O,D三点共线当且仅当AL//BC.

已知函数f(x)=ex-ax-a3.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)有极小值,且极小值小于0,求a的取值范围.

在n×n的方格表中,若两个方格有公共边,则称它们是相邻的.若l个互异方格A1,A2,⋯,A_l满足Ai和Ai+1相邻(1≤i≤l-1),则称它们为一条长度为l的“龙”.求最大正整数k,使得可以给每个方格填上0或者1,并且对任意一个方格A,和以A中数字为首项的0,1序列m1,m2,⋯,mk,都存在从A开始的长度为k的龙,方格中的数字依次是m1,m2,⋯,mk.

证明:任意正整数的平方均可表示为((a-b)²+(b-c)²+(c-a)²)/(2(ab+bc+ca))的形式,其中a,b,c为正整数.

设P为平面凸多边形,若线段AB的两端点在P的边界上,并且过A,B与AB垂直的两条直线之间的区域(含边界)包含P,则称线段AB为“锦弦”. 求最大的正整数k,使得任意平面凸多边形P都有k条锦弦.

若实数τ满足:对任意正整数x,y,z,均有x²+2y²+4z²+8≥2x(y+z+τ)则称τ为“平生数”.记最大的平生数为τ0.(1)求τ0的值;(2)求方程x²+2y²+4z²+8=2x(y+z+τ0)的所有正整数解(x,y,z).