问答题(2024年东南地区奥林匹克

设P为平面凸多边形,若线段AB的两端点在P的边界上,并且过A,B与AB垂直的两条直线之间的区域(含边界)包含P,则称线段AB为“锦弦”. 求最大的正整数k,使得任意平面凸多边形P都有k条锦弦.

答案解析

解答过程见word版

讨论

以 n 角形之顶点为顶点,而不是 n 角形之边为边之三角形共有若干?

Homologous sides of two similar polygons have the ratio of 5 to 9 , the sum of the areas is 212 sq. ft. Find the area of each figure.

n 多边形诸角之和=______.

证明:任意正整数的平方均可表示为((a-b)²+(b-c)²+(c-a)²)/(2(ab+bc+ca))的形式,其中a,b,c为正整数.

在n×n的方格表中,若两个方格有公共边,则称它们是相邻的.若l个互异方格A1,A2,⋯,A_l满足Ai和Ai+1相邻(1≤i≤l-1),则称它们为一条长度为l的“龙”.求最大正整数k,使得可以给每个方格填上0或者1,并且对任意一个方格A,和以A中数字为首项的0,1序列m1,m2,⋯,mk,都存在从A开始的长度为k的龙,方格中的数字依次是m1,m2,⋯,mk.

在锐角三角形△ABC中,AB>AC,O为外心. 设D为BC上一点,O1,O2分别为△ABD,△ACD的外心,△AO1O2的外接圆与⨀O交于不同于A的点L.证明:A,O,D三点共线当且仅当AL//BC.

求方程(√3+2sin2x)/(√3+2sinx)=√3 sinx+cos2x/2cosx在(0,π/2)内的解.

设a正整数,fa (x)=x4+ax²+1.定义集合Pa={p|p为素数,且存在正整数k使得fa (2k)是p的倍数}(1)证明:对任意正整数a,Pa为无限集;(2)若Pa的任意两个元素之差是8的倍数,求正整数a的最小值.

一项考试的可能得分为0,1,2,⋯,150,有100名考生P1,P2,⋯,P100,考完后依顺时针围成一圈交流成绩,记Pi的成绩为ai.每个考生Pi比较自己与相邻两人Pi-1,Pi+1(下标按模100理解 )的得分,定义Pi的激励值fi为:fi=记S=f1+f2+⋯+f100.(1)求S的最大值;(2)求使得f1,f2,⋯,f100两两不相等的S的最大值.

设P为平面凸多边形,若线段AB的两端点在P的边界上,并且过A,B与AB垂直的两条直线之间的区域(含边界)包含P,则称线段AB为“锦弦”. 求最大的正整数k,使得任意平面凸多边形P都有k条锦弦.