记△ABC的内角A,B,C对应的边分别为a,b,c,已知sinA+√3 cosA=2.
(1)求A.
(2)若a=2,√2 bsinC=csin2B,求△ABC的周长.
记△ABC的内角A,B,C对应的边分别为a,b,c,已知sinA+√3 cosA=2.
(1)求A.
(2)若a=2,√2 bsinC=csin2B,求△ABC的周长.
解答过程见word版
在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有____种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是______.
已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=√2+1,则sin(α+β)=______.
记Sn为等差数列{an}的前n项和,若a3+a4=7,3a2+a5=5,则S10=________.
抛物线C:y²=4x的准线为l,P为C上的动点,过P作⨀A:x²+(y-4)²=1的一条切线,Q为切点,过P作l的垂线,垂足为B,则【 】
对于函数f(x)=sin2x和g(x)=sin(2x-π/4),下列正确的有【 】
设函数f(x)=(x+a)ln(x+b),若f(x)≥0,则a²+b²的最小值为【 】
已知正三棱台ABC-A1B1C1的体积为52/3,AB=6,A1B1=2,则A1A与平面ABC所成角的正切值为【 】
设函数f(x)=a(x+1)²-1,g(x)=cosx+2ax,当x∈(-1,1)时,曲线y=f(x)与y=g(x)恰有一个交点,则a=【 】
已知曲线C:x²+y²=16(y>0),从C上任意一点P向x轴作垂线段PP',P'为垂足,则线段PP'的中点M的轨迹方程为【 】
有ABC三角形,已知B=15°,b=√3-1,c=√3+1,试求其余各项.
于正东正南甲乙二地,测得某山之仰角为 45°及 30°,今甲乙两地之距离为2400 尺,求山高.
两树相距 50 尺,在此树距地 5 尺处观他树之树顶与树根适成 90°之角,又观他树顶之仰角为 60°,求他树之高.
于 A,B,C 三阵地测得敌机之仰角为 60°,45°,45°,今 B 地在 A 地正北 3000尺,C 地在 A 地之正西 4000 尺,求敌机之高,并讨论之.
有等高的两竿,自其底连线上一点望之,较近之竿的仰角为 60°,若自该点向此线之垂直方向行 80 尺而测之,得二竿之仰角为 45°,30°,试求二竿之高及其间的距离.
设人眼在墙顶上观察一塔,测得塔之全长所夹之角为θ,设墙高为h尺,墙与塔之距离为d尺.试证:(h²+d²)sinθ/(hsinθ+dcosθ)尺为塔这高.
已知向量a,b满足|a|=1,|a+2b|=2,且(b-2a)⊥b,则|b|=【 】
在平面直角坐标系xOy中,椭圆x²/a² +y²/b² =1(a>b>1)的右焦点为F(c,0),若存在经过焦点F的一条直线l交椭圆于A,B两点,使得OA⊥OB.求椭圆的离心率e=c/a的取值范围.
已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0.当直线l被C截得的弦长为2√3时,a=【 】
直线x-y+m=0(m>0)与圆(x-1)2+(y-1)2=3相交所得的弦长为m,则m=______.
关于直交轴有三直线: x=0,y=0,x/a+y/b=1.求与此三直线相切之圆之方程式.