单项选择(2024年新高考Ⅱ

设函数f(x)=(x+a)ln⁡(x+b),若f(x)≥0,则a²+b²的最小值为【 】

A、1/8

B、1/4

C、1/2

D、1

答案解析

C易知,f(x)的定义域为(-b,+∞),令x+a=0得x=-a;令ln⁡(x+b)=0得x=1-b,当x∈(-b,1-b)时,ln⁡(x+b)<0,故x+a≤0,所以1-b+a≤0;当x∈(1-...

查看完整答案

讨论

一项考试的可能得分为0,1,2,⋯,150,有100名考生P1,P2,⋯,P100,考完后依顺时针围成一圈交流成绩,记Pi的成绩为ai.每个考生Pi比较自己与相邻两人Pi-1,Pi+1(下标按模100理解 )的得分,定义Pi的激励值fi为:fi=记S=f1+f2+⋯+f100.(1)求S的最大值;(2)求使得f1,f2,⋯,f100两两不相等的S的最大值.

设n为正整数.若平面中存在两点A,B及2024个不同的点P1,P2,⋯,P2024满足:线段AB及各条线段APi,BPi (i=1,2,⋯,2024)的长度均为不超过n的正整数,求n的最小值.

Find the maximum value of (7-x)4 (2+x)6 when x lies between 7 and 2.

Find the maximum value of (5+x)(2+x)/(1-x).

设α=sin2k⁡(π/6) ,函数g:[0,1]→R定义为g(x)=2αx+2α(1-x).下列叙述正确的有【 】

求(x+2)/(2x²+3x+6)之最大值.

设(a-1)(b-1)>0,a,b,θ皆为实数,求(a+cosθ)(b+cosθ)/(1+cosθ)之极小值.

设a>0,函数f(x)=,给出下列四个结论:①f(x)在区间(a-1,+∞)上单调递减;②当a≥1时,f(x)存在最大值;③设M(x1,f(x1 ))(x1≤a),N(x2,f(x2))(x2>a),则|MN|>1;④设P(x3,f(x3 ))(x3<-a),Q(x4,f(x4))(x4≥-a),若|PQ|存在最小值,则a的取值范围是(0,1/2].其中所有正确结论的序号是____________.

设函数f(x)满足:对任意非零实数x,均有f(x)=f(1)∙x+f(2)/x-1,则f(x)在(0,+∞)上的最小值为__________.

在研究某市交通情况时, 道路密度是指该路段上一定时间内通过的车辆数除以时间, 车辆密度是该路段一定时间内通过的车辆数除以该路段的长度. 现定义交通流量为 v=q/x(x, q 分别是道路密度和车辆密度, 且 x ∈(0, 80]). 据调查某路段的交通流量有如下规律:,(k > 0).求: (1) 若交通流量 v 大于 95, 求 x 的取值范围;(2) 已知道路密度为 80 时, 交通流量为 50. 问 x 多少的时候 q 最大?