填空题(2024年新高考Ⅱ

记Sn为等差数列{an}的前n项和,若a3+a4=7,3a2+a5=5,则S10=________.

答案解析

95

【解析】

解答过程见word版

讨论

用f(n)表示整数n的二进制中数码“1”占所有数码的比例,例如21=(10101)2,则f(21)=3/5.(1)是否存在由21个不超过2024的正整数构成的非常值等差数列a1,a2,⋯,a21,使得f(a1)=f(a2)=⋯=f(a21)?证明你的结论.(2)是否存在无穷多个正整数m,使得f(m²)>7/10?证明你的结论.

已知等差数列{an}的首项a1=-1,公差d>1.记{an}的前n项和为Sn(n∈N* ).(1)若S4-2a2 a3+6=0,求Sn;(2)若对于每个n∈N*,存在实数cn,使an+cn,an+1+4cn,an+2+15cn成等比数列,求d的取值范围.

已知等差数列{an}的公差不为零,Sn为其前n项和,若S5=0,则Si (i=0,1,2,…,100)中不同的数值有________个。

已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为1/4的等差数列,则|m-n|=【 】

设{an}是等差数列;{bn}是等比数列;a1=b1=a2-b2=a3-b3=1.(1)求{an}与{bn }的通项公式;(2)设{an}的前n项和为Sn,求证:(Sn+1+an+1 ) bn=Sn+1 bn+1-Sn bn;(3)求∑k=12n(ak+1-(-1)k ak ) bk .

等差数列{an}的各项均为正数,首项与公差相等,=2,则a4的值为【 】

若方程x4-4x3-34x2+ax+b=0之根成等差级数,求a,b及四根.

设等差数列{an}的公差为d,且d>1,令bn=(n²+n)/an ,记Sn,Tn分别为数列{an },{bn}的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求{an}的通项公式;(2)若{bn}为等差数列,且S99-T99=99,求d.

等差数列{an}满足a2021=a20+a21=1,则a1的值为__________.

已知等差数列{an}的公差d>0,首项an>0,Sn=1/(aiai+1),则Sn =________。