用f(n)表示整数n的二进制中数码“1”占所有数码的比例,例如21=(10101)2,则f(21)=3/5.
(1)是否存在由21个不超过2024的正整数构成的非常值等差数列a1,a2,⋯,a21,使得f(a1)=f(a2)=⋯=f(a21)?证明你的结论.
(2)是否存在无穷多个正整数m,使得f(m²)>7/10?证明你的结论.
用f(n)表示整数n的二进制中数码“1”占所有数码的比例,例如21=(10101)2,则f(21)=3/5.
(1)是否存在由21个不超过2024的正整数构成的非常值等差数列a1,a2,⋯,a21,使得f(a1)=f(a2)=⋯=f(a21)?证明你的结论.
(2)是否存在无穷多个正整数m,使得f(m²)>7/10?证明你的结论.
解答过程见word版
设n为正整数.若平面中存在两点A,B及2024个不同的点P1,P2,⋯,P2024满足:线段AB及各条线段APi,BPi (i=1,2,⋯,2024)的长度均为不超过n的正整数,求n的最小值.
求最大的正整数n,使得平面上存在n个点P1,P2,⋯,Pn(任意三点不共线)和不过其中任意点的n条直线l1,l2,⋯,ln(任意三线不共点),满足对任意i≠j,直线Pi Pj,li,lj三线共点.
在平面直角坐标系xOy中,椭圆x²/a² +y²/b² =1(a>b>1)的右焦点为F(c,0),若存在经过焦点F的一条直线l交椭圆于A,B两点,使得OA⊥OB.求椭圆的离心率e=c/a的取值范围.
设a,b,c,d∈(0,1),满足a²+b²+c²+d²=3,证明:(1-a²)/(b+c)+(1-b²)/(c+d)+(1-c²)/(d+a)+(1-d²)/(a+b)<2/3.
Find the sum of n terms of the series whose nth term is 3(4n+4n²)-5n³.
Find the general term and the sum ofn terms of the series -3,-1,11,39,89,167.
Find the sum of the geometical series -2,,-1/3 to 6 terms.
设数列{an}的前n项和为Sn.则a2,a3,a4,⋯为等比数列.(1) Sn+1>Sn,n=1,2,3,⋯(2) {Sn}是等比数列.
求级数1/(1×3)+1/(3×5)+1/(5×7)+⋯ n项及无穷项之和.其第n项为1/(2n-1)(2n+1).