设{an}与{bn}是两个不同的无穷数列,且都不是常数数列,记集合M={k|ak=bk,k∈N*},给出下列4个结论:
①若{an}与{bn}均为等差数列,则M中最多有1个元素;
②若{an}与{bn}均为等比数列,则M中最多有3个元素;
③若{an}为等差数列,{bn}为等比数列,则M中最多有3个元素;
④若{an}为递增数列,{bn}为递减数列,则M中最多有1个元素.
其中正确结论的序号是________.
设{an}与{bn}是两个不同的无穷数列,且都不是常数数列,记集合M={k|ak=bk,k∈N*},给出下列4个结论:
①若{an}与{bn}均为等差数列,则M中最多有1个元素;
②若{an}与{bn}均为等比数列,则M中最多有3个元素;
③若{an}为等差数列,{bn}为等比数列,则M中最多有3个元素;
④若{an}为递增数列,{bn}为递减数列,则M中最多有1个元素.
其中正确结论的序号是________.
①③④
【解析】
解答过程见word版
记Sn为等差数列{an}的前n项和,若a3+a4=7,3a2+a5=5,则S10=________.
记Sn为等差数列{an}的前n项和. 已知S5=S10,a5=1,则a1=【 】
等差数列{an}的前n项和为Sn,若S9=1,则a3+a7=【 】
记Sn为数列{an}的前n项和,bn为数列{Sn}的前n项积,已知2/Sn +1/bn =2.(1)证明:数列{bn}是等差数列;(2)求{an}的通项公式.
已知{an}和{bn}是两个等差数列,且ak/bk (1≤k≤5)是常值,若a1=288,a5=96,b1=192,则b3的值为【 】
在2和30中间插入两个正数,这两个正数插入后使前三个数成等比数列,后三个数成等差数列,求插入的两个正数?
记Sn为数列{an }的前n项和,已知a1=1,{Sn/an }是公差为1/3的等差数列.(1)求{an}的通项公式;(2)证明:1/a1 +1/a2 +⋯+1/an <2.
记Sn为数列{an }的前n项和.已知2Sn/n+n=2an+1.(1)证明:{an }是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.
记Sn为数列{an}的前n项和,已知4Sn=3an+4.(1)求{an}的通项公式;(2)设bn=(-1)n nan,求数列{bn}的前n项和Tn.
已知等比数列{an}的前n项和为Sn,且2Sn=3an+1-3.(1)求{an}的通项公式;(2)求数列{Sn}的通项公式.
设数列{an}的前n项和为Sn.则a2,a3,a4,⋯为等比数列.(1) Sn+1>Sn,n=1,2,3,⋯(2) {Sn}是等比数列.
以三角形各边为直径作圆,试证任意两边上二圆公切线之长为第三边被内切圆切点所分两部分之比例中项.
设{an}是等差数列, a1=1,Sn是它的前n项和;{bn}是等比数列,其公比的绝对值小于1, Tn 是它的前n项和.如果a3=b2,S5=2T2-6,Tn =9,求{an },{bn}的通项公式.
已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则(a1+a3+a9)/(a2+a4+a10 )的值是________.
已知等比数列{an}的前3项和为168,a2-a5=42,则a6=【 】