记Sn为数列{an}的前n项和,已知4Sn=3an+4.
(1)求{an}的通项公式;
(2)设bn=(-1)n nan,求数列{bn}的前n项和Tn.
记Sn为数列{an}的前n项和,已知4Sn=3an+4.
(1)求{an}的通项公式;
(2)设bn=(-1)n nan,求数列{bn}的前n项和Tn.
解答过程见word版
已知等比数列{an}的前n项和为Sn,且2Sn=3an+1-3.(1)求{an}的通项公式;(2)求数列{Sn}的通项公式.
设{cn},{bn}是公比不相等的两个比数列,cn =an+bn.证明数列{cn}不是等比数列.
设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q=________.
设数列{an}是公比q>0的等比数列,Sn是它的前n项和,若Sn=7,则此数列的首项a1的取值范围是________.
记Sn为等比数列{an}的前n项和,若S2=4,S4=6,则S6=【 】
已知{an}为无穷等比数列,a1=3,an的各项和为9,bn=a2n,则数列{bn}的各项和为__________.
已知a,a∈R,ab>0,函数f(x)=ax2+bx(x∈R).若f(s-t),f(s),f(s+t)成等比数列,则平面上点(s,t)的轨迹是【 】
记Sn为等差数列{an}的前n项和,若a3+a4=7,3a2+a5=5,则S10=________.
记Sn为等差数列{an}的前n项和. 已知S5=S10,a5=1,则a1=【 】
等差数列{an}的前n项和为Sn,若S9=1,则a3+a7=【 】
求2+22+23+⋯+2n之和,并利用之以证1+3×2+5×22+⋯+(2n-1)∙2n-1=3-2n+(n-1) 2n+1.
问θ为何种数值时,sinθ+sin2θ+⋯+sinnθ+⋯成一收敛级数.
若a1,a2,⋯,an为已知正数,试求atctan(a1-a2)/(1+a1 a2)+atctan(a2-a3)/(1+a2 a3)+⋯+atctan(an-1-an)/(1+an-1 an)的值.