填空题(2024年全国甲·理

有6个相同的球,分别标有 1,2,3,4,5,6,从中无放回地随机取3次,每次取1个球.设m为前两次取出的球上数字的平均值,n为取出的三个球上数字的平均值,则m与n之差的绝对值不大于1/2的概率为______.

答案解析

7/15

【解析】

解答过程见word版

讨论

某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中则该队被淘汰,比赛成绩为0分.若至少投中一次,则该队进入第二阶段,由该队的另名队员投篮3次,每次投中得5分未投中得 0分,该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p,乙每次投中的概率为q,各次投中与否相互独立.(1)若p=0.4,q=0.5, 甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0<p<q.(i)为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段的比赛?(ii)为使得甲、乙所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段的比赛?

甲、乙、丙丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是【 】

甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个.甲、乙二人依次各抽一题.(I)甲抽到选择题、乙抽到判断题的概率是多少?(II)甲、乙二人中至少有一个人抽到选择题的概率是多少?

已知花博会有四个不同的场馆A、B、C、D,甲、乙两人每人选2个去参观,则他们的选择中,恰有一个馆相同的概率为__________.

从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为【 】

从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为【 】

从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.

有6张卡片,正面分别写有数字1~6,背面都写有数字0.起初将这些卡片正面朝上排成一排,且第k个位置上的卡片恰写有数字k.下面利用这6张卡片和一枚均匀的骰子进行如下实验:掷出骰子,若点数为k,则将第k个位置上的卡片翻面,放在原处。进行上述实验3次,若卡片朝上的数字之和为偶数,在这一条件下,骰子恰有一次点数为1的概率为q/p.求p+q的值(p,q为互质整数)

假设P1,P2两人进行比赛,每回合两人分别投掷一枚均匀的骰子,设x,y分别为P1,P2投出的点数,若x>y,记P1得5分,P2得0分;若x=y,记P1,P2均得2分;若x<y,记P1得0分,P2得5分.设Xi,Yi分别为第i回合后P1,P2的总得分.列Ⅰ 列Ⅱ(Ⅰ)P(X2≥Y2 )= (P) 3/8(Ⅱ)P(X2>Y2 )= (Q) 11/16(Ⅲ)P(X3=Y3 )= (R) 5/16(Ⅳ)P(X3>Y3 )= (S) 355/864 (T) 77/432正确的选项为【 】

掷骰一粒,连掷十次,求掷得四次六点之几率.

甲能解某题之几率为b/a,乙能解某题之几率为d/c,设甲与乙独自解之,试用两种方法,求某题能解之几率.

甲乙两人投篮, 每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮. 无论之前投篮情况如何, 甲每次投篮的命中率均为 0.6,乙每次投篮的命中率均为0.8,由抽签决定第一次投篮的人选,第一次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i次投篮的人是甲的概率;(3)已知:若随机变量X_i服从两点分布,且P(Xi=1)=1-P(Xi=0)=qi,i=1,2,⋯,n,则E(Xi )=qi ,记前n次(即从第1次到第n次投篮)中甲投篮的次数为Y,求E(Y).

在信道内传输0,1信号,信号的传输相互独立,发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送 1次,三次传输是指每个信号重复发送3次,收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).

为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.时段 价格变化第1天到第20天 - + + 0 - - - + + 0 + 0 - - + - + 0 0 +第21天到第40天 0 + + 0 - - - + + 0 + 0 + - - - + 0 - +用频率估计概率.(1)试估计该农产品价格“上涨”的概率;(2)假设该农产品每天的价格变化是相互独立的,在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概;(3)假设该农产品每天的价格变化只受前一天价格变化的影响,判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大(结论不要求证明).

有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1,2和3.现任取出3面,它们的颜色与号码均不相同的概率是________.

如图,用A,B,C三类不同的元件连接成两个系统N1 N2.当元件A,B,C都正常工作时,系统N1正常工作; 当元件A正常工作且元件B,C至少有一个正常工作; 时,系统N2正常工作.已知元件A,B,C正常工作的概率依次为0.80,0.90,0.90分别求系统N1 N2正常工作的概率P1 P2.

有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则【 】

某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由。

在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于7/4的概率为【 】

在区间(0,1/2]随机取1个数,则取到的数小于1/3的概率为【 】