设向量a=(x+1,x),b=(x,2),则【 】
A、x=-3是a⊥b的必要条件
B、x=-3是a//b的必要条件
C、x=0是a⊥b的充分条件
D、x=-1+√3是a//b的必要条件
设向量a=(x+1,x),b=(x,2),则【 】
A、x=-3是a⊥b的必要条件
B、x=-3是a//b的必要条件
C、x=0是a⊥b的充分条件
D、x=-1+√3是a//b的必要条件
C
【解析】
解答过程见word版
已知向量a,b满足|a|=1,|a+2b|=2,且(b-2a)⊥b,则|b|=【 】
已知向量a=(m,3),b=(1,m+1).若a⊥b,则m=__________.
已知向量a,b满足|a|=1,|b|=√3,|a-2b|=3,则a⋅b=【 】
已知向量a=(2,1),b=(-2,4),则|a-b|=【 】
在△ABC中,AC=3,BC=4,∠C=90°.P为△ABC所在平面内的动点,且PC=1,则(PA)⋅(PB)的取值范围是【 】
设点P在单位圆的内接正八边形A1A2…A8的边A1A2上,则(PA1)2+(PA2)2+⋯+(PA8)2的取值范围是_______.
已知λ>0,向量|a|=|b|=|c|=λ,且a∙b=0,c∙b=1,c∙a=2,则λ=________.
在∆ABC中,(CA)→=a,(CB)→=b,D是AC的中点,(CB)→=2(BE)→,试用a,b表示(DE)→=________;若(AB)→⊥DE→,求∠C的最大值为______.
已知命题p:∀x∈R,|x+1|>1;命题q:∃x>0,x³=x,则【 】
设整数n≥100.伊凡把n,n+1,…,2n的每个数写在不同的卡片上.然后他将这n+1张卡片打乱顺序并分成两堆.证明:至少有一堆中包含两张卡片,使得这两张卡片上的数之和是一个完全平方数.
设函数f(x)的定义域为[0,1].则“函数f(x)在[0,1]上单调递增”是“函数f(x)在[0,1]上的最大值为f(1)”的【 】
设f(x)=x3+log2(x+),对任意实数a,b,a+b≥0是f(a)+f(b)≥0的【 】.
给定整数n≥2,设M0 (x0,y0)是抛物线y2=nx-1与直线y=x的一个交点.试证明对任意正整数m,必存在整数k≥2,使(x0m,y0m)为抛物线y2=kx-1与直线y=x的一个交点.
设{an}是公差不为0的无穷等差数列,则“{an}为递增数列”是“存在正整数N0,当n>N0时,an>0”的【 】
有体育、美术、音乐、舞蹈4个兴趣班,每名同学至少参加 2个.则至少有 12 名同学参加的兴趣班完全相同【 】(1)参加兴趣班的同学共有 125人.(2)参加2个兴趣班的同学有 70人.
关于x的方程x²-px+q=0有两个实根a,b,则p-q>1【 】(1) a>1. (2) b<1.
已知等比数列{an}的公比大于1,则{an}单调上升【 】(1) a1是方程 x2-x-2=0的根(2) a1是方程x2+x-6=0的根
设x,y是实数,则有最小值和最大值【 】(1) (x-1)2+(y-1)2=1 (2) y=x+1
设集合M={(x,y)│(x-a)²+(y-b)²≤4},N={(x,y)|x>0,y>0},则M∩N≠∅【 】(1) a<-2 (2) b>2