问答题(2024年全国甲·文

已知等比数列{an}的前n项和为Sn,且2Sn=3an+1-3.

(1)求{an}的通项公式;

(2)求数列{Sn}的通项公式.

答案解析

解答过程见word版

讨论

已知双曲线C:x²-y²=m(m>0).点P1 (5,4)在C上,k为常数,0<k<1.按照如下方式依次构造点Pn (n=2,3,⋯),过点Pn-1作斜率为k的直线与C的左支交点Qn-1,令Pn为Qn-1关于y轴的对称点,记Pn的坐标为(xn,yn).(1)若k=1/2,求x2,y2.(2)证明:数列{xn-yn}为公比为(1+k)/(1-k)的等比数列.(3)设Sn为△Pn Pn+1 Pn+2的面积,证明:对任意的正整数n,Sn=Sn+1.

记Sn为数列{an}的前n项和,已知4Sn=3an+4.(1)求{an}的通项公式;(2)设bn=(-1)n nan,求数列{bn}的前n项和Tn.

我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物林质量的“环权”,已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{an},该数列的前3项成等差数列,后7项成等比数列,且a1=1,a5=12,a9=192,则a7=______;数列{an}所有项的和为________.

在各项均为正数的等比数列{an}中,若a5a6 = 9,则log3a1 + log3a2 + ... + log3a10 =【 】

设{an}是由正数组成的等比数列,Sn是其前n项和.(1)证明(lgSn+lgSn+2)/2<lgSn+1.(2)是否存在常数c>0,使得[lg(Sn-c)+lg⁡(Sn+2-c)]/2=lg(Sn+1-c)成立?并证明你的结论.

如图为一台冷轧机的示意图.冷轧机由若干对轧辊组成,带钢从一端输入,经过各对轧辊逐步减薄后输出. (I)输入带钢的厚度为α,输出带钢的厚度为β,若每对轧辊的减薄率不超过r0.问冷轧机至少需要安装多少对轧辊?[一对轧辊减薄率= (输入该对的带钢厚度-从该对输出的带钢厚度) ÷输入该对的带钢厚度](Ⅱ)已知一台冷轧机共有4对减薄率为20%的轧辊,所有轧辊周长均为1600 mm.若第k对轧辊有缺陷,每滚动一周在带钢上压出一个疵点,,在冷轧机输出的带钢上,疵点的间距为Lk.为了便于检修,请计算L1 、L2 、L3并填入下表(轧钢过程中,带钢宽度不变,且不考虑损耗).

已知数列{cn},其中cn=2n+3n,且数列{cn+1 - pcn}为等比数列,求常数p.

设{cn},{bn}是公比不相等的两个比数列,cn =an+bn.证明数列{cn}不是等比数列.

在等差数列{an}中,若a10=0,则有等式a1+a2+⋯+an=a1+a2+⋯+a19-n (n<19,n∈N)成立.类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式____________成立.

设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q=________.