问答题(2024年全国甲·理2024年全国甲·文

在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=ρcosθ+1.

(1)写出C的直角坐标方程;

(2)设直线l:(t为参数),若C与l相交于A,B两点,且|AB|=2,求a.

答案解析

解答过程见word版

讨论

设0<θ<π/2,曲线x2sin⁡θ+y2cos⁡θ=1和x2cos⁡θ-y2sin⁡θ=1有4个不同的交点.(Ⅰ)求θ的取值范围;(Ⅱ)证明这4个交点共圆,并求圆半径的取值范围.

在直角坐标系xOy中,⨀C的圆心为C(2,1),半径为1.(1)写出⨀C的一个参数方程;(2)过点F(4,1)作⨀C的两条切线,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.

在直角坐标系xOy中,曲线C的方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立坐标系,已知直线l的极坐标方程为ρsin⁡(θ+π/3)+m=0.(1) 写出l的直角坐标方程;(2) 若l与C有公共点,求m的取值范围.

Find the equation in polar coordinates of the straight line which is perpendicular to the polar axes at a distance of 5 units from the pole.

极坐标方程分别是ρ=cosθ和ρ=sinθ的两个圆的圆心距是【 】

曲线的极坐标方程ρ=4sin⁡θ化成直角坐标方程为【 】

极坐标方程ρ=2sin⁡(θ+π/4)的图形是【 】

某电厂冷却塔的外形是如图所示双曲线的一部分绕其中轴(即双曲线的虛轴)旋转所成的曲面,其中A,A'是双曲线的顶点,C,C是冷却塔上口直径的两个端点,B,B'是下底直径的两个端点,已知AA'=14 m, CC'=18 m,BB'=22 m,塔高20 m.(Ⅰ)建立坐标系并写出该双曲线方程;(Ⅱ)求冷却塔的容积(精确到10m3 ,塔壁厚度不计,π取3.14).

在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程ρ=2cosθ.(1)将C的极坐标方程化为直角坐标方程;(2)设点A的直角坐标为(1,0),M为C上的动点,点P满足=,写出P的轨迹C1的参数方程,并判断C与C1是否有公共点.

极坐标方程4sin2⁡θ = 3表示的曲线是【 】