关注优题吧,注册平台账号.
设z=√2 i,则z∙z ̅=【 】
A、-i
B、1
C、-1
D、2
D
【解析】
依题意得:z ̅=-√2 i,
故,z∙z ̅=-2i²=2.
集合A={1,2,3,4,5,9},B={x|x+1∈A},则A∩B=【 】
实数a,b满足a+b≥3.(1)证明:2a²+2b²>a+b;(2)证明:|a-2b² |+|b-2a² |≥6.
在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=ρcosθ+1.(1)写出C的直角坐标方程;(2)设直线l:(t为参数),若C与l相交于A,B两点,且|AB|=2,求a.
已知函数f(x)=(1-ax) ln(1+x)-x.(1)若a=-2,求f(x)的极值;(2)当x≥0时,f(x)≥0,求a的取值范围.
设椭圆C:x²/a² +y²/b² =1(a>b>0)的右焦点为F,点M(1,3/2)在C上,且MF⊥x轴.(1)求C的方程;(2)过点P(4,0)的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y轴.
如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等边梯形,EF∥AD,BC∥AD,AD=4,AB=BC=EF=2,ED=√10,FB=2√3, M为AD的中点.(1)证明:BM∥平面CDE;(2)求二面角F-BM-E的正弦值.
记Sn为数列{an}的前n项和,已知4Sn=3an+4.(1)求{an}的通项公式;(2)设bn=(-1)n nan,求数列{bn}的前n项和Tn.
某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下: 优级品 合格品 不合格品 总计甲车间 26 24 0 50乙车间 70 28 2 100总计 96 52 2 150(1)填写如下列联表: 优级品 品优级品甲车间 乙车间 能否有95%的把握认为甲乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率p=0.5.设p ̅为升级改造后抽取的n件产品的优级率.如果p ̅>p+1.65√((p(1-p))/n),则认为该工厂产品的优级品率提高了.根据抽取的150件产品率.能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?( √150≈12.247)附:K²=n(ad-bc)²/((a+b)(c+d)(a+c)(b+d))P(K²≥k) 0.050 0.010 0.001k 3.841 6.635 10.828
有6个相同的球,分别标有 1,2,3,4,5,6,从中无放回地随机取3次,每次取1个球.设m为前两次取出的球上数字的平均值,n为取出的三个球上数字的平均值,则m与n之差的绝对值不大于1/2的概率为______.
已知a>1,且1/log8a -1/loga4 =-5/2,则a=______.
设z=5+i,则i(z ̅+z)=【 】
已知z=(1-i)/(2+2i),则z-z ̅=【 】
已知复数列{zn}满足:z1=√3/2,zn+1=zn ̅(1+zni)(n=1,2,⋯)其中i为虚单位.求z2021的值.
设复数z满足关系式z+|z ̅|=2+i,那么z等于【 】
设复数ω = cos(2π/5) + isin(2π/5),则ω + ω2 + ω3 + ω4 + ω5的值是________.
设复数z1 = 2 - i,z2 = 1 - 3i,则复数i/z1 + z2/5的虚部等于______.
已知z∈C,解方程zz ̅ - 3iz ̅ = 1+3i.
当z=-(1-i)/时,z100 + z50 + 1的值等于【 】
设复数z=cosθ+isinθ(0<θ<π),ω=,已知|ω|=/3,argω<π/2,求θ.
如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是【 】
已知z=-1-i,则|z|=【 】
证明:任意正整数的平方均可表示为((a-b)²+(b-c)²+(c-a)²)/(2(ab+bc+ca))的形式,其中a,b,c为正整数.
设a正整数,fa (x)=x4+ax²+1.定义集合Pa={p|p为素数,且存在正整数k使得fa (2k)是p的倍数}(1)证明:对任意正整数a,Pa为无限集;(2)若Pa的任意两个元素之差是8的倍数,求正整数a的最小值.
将 81 分为两整数,其一为 8 之倍数,其他为 5 之倍数.
表通常十进数 345 为二进数
加法及乘法之交换律,结合律,分配律如何?
在 1,2,···,99,100 一百个数内任意选出五十一个数,证明在此五十一个数内恒可以找到二个数,其中一个数为另一个数的倍数.
有连续三整数,其平方和为 50,求此三数.
有一个二位数,其数字之和为 14,若将其二数字之位置交换,则所得之数较之原数大 18,求原数.
今有三数,其和为 37,积为 1440,且其中二数的积较第三数的三倍大 12.试求此三数.