问答题(2024年上海市

对于一个函数f(x)和一个点M(a,b),定义s(x)=(x-a)²+(f(x)-b)²  ,若点P(x0  ,f(x0 ))是s(x)取到最小值的点,则称点P是M在f(x)的“最近点”.

(1)对于f(x)=1/x(x>0),求证:对于点M(0,0),存在点P,使得P是M在f(x)的“最近点”;

(2)对于f(x)=ex,M(1,0),请判断是否存在一个点P,它是M在f(x)的“最近点”,且直线MP与y=f(x)在P处的切线垂直;

(3)已知y=f(x)在定义域R上存在导函数f'(x),函数g(x)在定义域R上恒正,设点M1 (t-1,f(t)-g(t)),M2 (t+1,f(t)+g(t)),若对任意t∈R,存在点P同时是M1,M2在f(x)的“最近点”,试判断f(x)的单调性.

答案解析

解答过程见word版

讨论

设函数f(x)=(x+a)ln⁡(x+b),若f(x)≥0,则a²+b²的最小值为【 】

一项考试的可能得分为0,1,2,⋯,150,有100名考生P1,P2,⋯,P100,考完后依顺时针围成一圈交流成绩,记Pi的成绩为ai.每个考生Pi比较自己与相邻两人Pi-1,Pi+1(下标按模100理解 )的得分,定义Pi的激励值fi为:fi=记S=f1+f2+⋯+f100.(1)求S的最大值;(2)求使得f1,f2,⋯,f100两两不相等的S的最大值.

设n为正整数.若平面中存在两点A,B及2024个不同的点P1,P2,⋯,P2024满足:线段AB及各条线段APi,BPi (i=1,2,⋯,2024)的长度均为不超过n的正整数,求n的最小值.

设(a-1)(b-1)>0,a,b,θ皆为实数,求(a+cosθ)(b+cosθ)/(1+cosθ)之极小值.

已知 5x2y2 + y4 = 1 (x, y ∈ R), 则 x2 + y2 的最小值是________.

设a>0,函数f(x)=,给出下列四个结论:①f(x)在区间(a-1,+∞)上单调递减;②当a≥1时,f(x)存在最大值;③设M(x1,f(x1 ))(x1≤a),N(x2,f(x2))(x2>a),则|MN|>1;④设P(x3,f(x3 ))(x3<-a),Q(x4,f(x4))(x4≥-a),若|PQ|存在最小值,则a的取值范围是(0,1/2].其中所有正确结论的序号是____________.

设函数f(x)满足:对任意非零实数x,均有f(x)=f(1)∙x+f(2)/x-1,则f(x)在(0,+∞)上的最小值为__________.

在研究某市交通情况时, 道路密度是指该路段上一定时间内通过的车辆数除以时间, 车辆密度是该路段一定时间内通过的车辆数除以该路段的长度. 现定义交通流量为 v=q/x(x, q 分别是道路密度和车辆密度, 且 x ∈(0, 80]). 据调查某路段的交通流量有如下规律:,(k > 0).求: (1) 若交通流量 v 大于 95, 求 x 的取值范围;(2) 已知道路密度为 80 时, 交通流量为 50. 问 x 多少的时候 q 最大?

如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱.污水从A孔流人,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问:当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计)?

设计一幅宣传画,要求画面面积为4840cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm空白,左、右各留5cm空白,怎样确定画画的高与宽的尺寸,能使宣传画所用纸张面积最小?如果要求λ∈[2/3,3/4],那么λ为何值时,能使宣传画所用的纸张面积最小?