填空题(2024年上海市

已知f(x)=x³+a,x∈R,且f(x)是奇函数,则a=______.

答案解析

0

【解析】

∵f(x)为奇函数,

∴f(-x)+f(x)=0,即x³+a+(-x)³+a=0,

解得:a=0.

讨论

设函数f(x)=a(x+1)²-1,g(x)=cosx+2ax,当x∈(-1,1)时,曲线y=f(x)与y=g(x)恰有一个交点,则a=【 】

记水的质量为d=(S-1)/lnn,且d越大,水质量越好.若S不变,且d1=2.1,d2=2.2,则n1与n2的关系为【 】

已知函数f(x)的定义域为R,定义集合M={x0│x∈R,x∈(-∞,x0 ),f(x)<f(x0 ) },在使得M=[-1,1]的所有f(x)中,下列成立的是【 】

对于一个函数f(x)和一个点M(a,b),定义s(x)=(x-a)²+(f(x)-b)² ,若点P(x0 ,f(x0 ))是s(x)取到最小值的点,则称点P是M在f(x)的“最近点”.(1)对于f(x)=1/x(x>0),求证:对于点M(0,0),存在点P,使得P是M在f(x)的“最近点”;(2)对于f(x)=ex,M(1,0),请判断是否存在一个点P,它是M在f(x)的“最近点”,且直线MP与y=f(x)在P处的切线垂直;(3)已知y=f(x)在定义域R上存在导函数f'(x),函数g(x)在定义域R上恒正,设点M1 (t-1,f(t)-g(t)),M2 (t+1,f(t)+g(t)),若对任意t∈R,存在点P同时是M1,M2在f(x)的“最近点”,试判断f(x)的单调性.

已知f(x)=8+2x-x2,如果g(x)=f(2-x2),那么g(x)【 】

如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是【 】

根据函数单调性的定义,证明函数f(x)=-x3 + 1在(-∞,+∞)是减函数.

如果函数f(x)=x2+bx+c对任意实数t都有f(2+t)=f(2-t),那么【 】

定义在区间(-∞,+∞)上的奇函数f(x)为增函数;偶函数g(x)在区间├ [0,+∞)上的图像与f(x)的图像重合.设a>b>0,给出下列不等式:①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)>g(b)-g(-a).其中成立的是【 】

设函数y=f(x)是最小正周期为2的偶函数,它在区间[0,1]上的图像为如图所示的线段AB,则在区间[1,2]上,f(x)=__________.