问答题(2024年上海市

若f(x)=loga⁡x (a>0,a≠1).

(1)若y=f(x)过(4,2),求f(2x-2)<f(x)的解集;

(2)存在x使得f(x+1),f(ax),f(x+2)成等差数列,求a的取值范围.

答案解析

解答过程见word版

讨论

记Sn为等差数列{an}的前n项和,若a3+a4=7,3a2+a5=5,则S10=________.

用f(n)表示整数n的二进制中数码“1”占所有数码的比例,例如21=(10101)2,则f(21)=3/5.(1)是否存在由21个不超过2024的正整数构成的非常值等差数列a1,a2,⋯,a21,使得f(a1)=f(a2)=⋯=f(a21)?证明你的结论.(2)是否存在无穷多个正整数m,使得f(m²)>7/10?证明你的结论.

记Sn为等差数列{an}的前n项和. 已知S5=S10,a5=1,则a1=【 】

等差数列{an}的前n项和为Sn,若S9=1,则a3+a7=【 】

设{an}与{bn}是两个不同的无穷数列,且都不是常数数列,记集合M={k|ak=bk,k∈N*},给出下列4个结论:①若{an}与{bn}均为等差数列,则M中最多有1个元素;②若{an}与{bn}均为等比数列,则M中最多有3个元素;③若{an}为等差数列,{bn}为等比数列,则M中最多有3个元素;④若{an}为递增数列,{bn}为递减数列,则M中最多有1个元素.其中正确结论的序号是________.

已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为1/4的等差数列,则|m-n|=【 】

设{an}是等差数列;{bn}是等比数列;a1=b1=a2-b2=a3-b3=1.(1)求{an}与{bn }的通项公式;(2)设{an}的前n项和为Sn,求证:(Sn+1+an+1 ) bn=Sn+1 bn+1-Sn bn;(3)求∑k=12n(ak+1-(-1)k ak ) bk .

等差数列{an}的各项均为正数,首项与公差相等,=2,则a4的值为【 】

设l1,l2,⋯,l100是公差为d1的等差数列的前100项,w1,w2,⋯,w100是公差为d2的等差数列的前100项,且d1 d2=10.设Ai表示边长分别为li和wi的矩形的面积,若A51-A50=1000,则A100-A90的值为__________.

设a1,a2,⋯为首项为7,公差为8的等差数列,对于∀n≥1,T1,T2,⋯满足T1=3,Tn+1-Tn=an,则以下选项正确的是【 】