已知函数f(x)=a(x-1)-lnx+1.
(1)求f(x)的单调区间;
(2)若a≤2,证明:当x>1时,f(x)<ex-1恒成立.
已知函数f(x)=a(x-1)-lnx+1.
(1)求f(x)的单调区间;
(2)若a≤2,证明:当x>1时,f(x)<ex-1恒成立.
解答过程见word版
已知函数f(x)=ex-ax-a3.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)有极小值,且极小值小于0,求a的取值范围.
设函数f(x)=(ex+2sinx)/(1+x²),则曲线y=f(x)在点(0,1)处的切线与两坐标轴所围成的三角形的面积为【 】
已知函数f(x)=(1-ax) ln(1+x)-x.(1)若a=-2,求f(x)的极值;(2)当x≥0时,f(x)≥0,求a的取值范围.
曲线f(x)=x6+3x-1在(0,-1)处的切线与坐标轴围成的面积为【 】
曲线y=x³-3x与y=-(x-1)²+a在(0,+∞)上有两个不同的交点,则a的取值范围为 ______.
已知函数f(x)=ln(1+x)+axe-x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(-1,0),(0,+∞)各恰有一个零点,求a的取值范围.
已知函数f(x)=ax-1/x-(a+1)lnx.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.
已知函数f(x)=x(1-lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna-alnb=a-b,证明:2<1/a+1/b<e.
已知函数 和g(x)=ax-lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
根据函数单调性的定义,证明函数f(x)=-x3 + 1在(-∞,+∞)是减函数.
已知函数f(x)=ex/x-lnx+x-a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.
已知c>0.设P:函数y=cx在R上单调递减.Q:不等式x+|x-2c|>1的解集为R.如果P和Q有且仅有一个正确,求c的取值范围.
若f(x)在点x=x0处连续,且f(x0)>0,则存在一个x0的(x0﹣δ,x0+δ),在这个邻域内,处处有f(x)>0.
当x=1时,函数f(x)=a lnx+b/x取得最大值-2,则f'(2)=【 】
设f(x)为多项式函数,g(x)=x2 f(x),若f(2)=1,f'(2)=3,则g'(2)的值为【 】
记曲线y=x3+x2,y=-x2+k(4<k<5)与y轴围成的面积为A,这两条曲线与直线x=2围成的面积为B,如图所示,若A=B,则k的值为【 】
对于函数f(x),已知f'(x)=4x3-2x,且f(0)=3,求f(2)的值.
设α为正实数,函数f:R→R和g:(α,+∞)→R分别定义为f(x)=sin(πx/12)和g(x)=2ln(√x-√α)/ln(e√x-e√α),则f[g(x)]=__________.
关于方程(lnx)1/2/(x[a-(lnx)1/2]2) dx=1,α∈(-∞,0)∪(1,+∞),下列叙述正确的有【 】