设,则(d2 y)/(dx2 )=__________.
设二维随机变量(X,Y)在区域D:0<x<1,|y|<x内服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差D(Z).
求一个正交变换,化二次型f=x12+4x22+4x32-4x1 x2+4x1 x3-8x2 x3成标准形.
设4阶矩阵B=,C=,且矩阵A满足关系式A(E-C-1 B)T CT=E,其中E为4阶单位矩阵,C-1表示 C的逆矩阵,CT表示 C的转置矩阵,将上述关系式化简并求矩阵A.
设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).证明:在(a,b)内至少存在一点ξ,使得f' (ξ)>0.
求曲面积分I=∬S yzdzdx+2dxdy,其中S是球面x2+y2+z2=4外侧在z≥0的部分.
设函数g(x)在x=0的领域内有定义,g(0)=g'(0)=0,f(x)=,求f'(0).
设f(x)在[a,b]上单调,证明其变上限积分F(x)=f(t)dt在每一x∈(a,b)的单侧导数F+'(x),F_'(x)均存在.
设函数f(x)在(-∞,+∞)内有定义,对任意x都有f(x+1)=2f(x),且当0≤x≤1时f(x)=x(1-x2),试判断在x=0处函数f(x)是否可导.
设f(x)可导,F(x)=f(x)(1+|sinx|),欲使F(x)在x=0可导,则必有【 】
设当x=0时,f(sinx)= f2(sinx),f'(x)≠0,则f(0)=__________.
已知函数y=f(x)在x=2处连续,且=2求证f(x)在x=2处可导,并求f'(x)=2.
设y=y(x)由方程xef(y)=eyln29确定,其中具有二阶导数,f'≠1,则= ____________________.