说明理由并证明:在什么条件下,方程F(x1,x2,⋯,xn )=0都能在x0∈Rn附近唯一确定可微函数xj=xj (x1,⋯,xj-1,xj+1,⋯,xn).并在x0附近,求(∂x1)/(∂x2 )(x)∙(∂x2)/(∂x3 )(x)⋯(∂xn-1)/(∂xn )(x)∙(∂xn)/(∂x1 )(x).
说明理由并证明:在什么条件下,方程F(x1,x2,⋯,xn )=0都能在x0∈Rn附近唯一确定可微函数xj=xj (x1,⋯,xj-1,xj+1,⋯,xn).并在x0附近,求(∂x1)/(∂x2 )(x)∙(∂x2)/(∂x3 )(x)⋯(∂xn-1)/(∂xn )(x)∙(∂xn)/(∂x1 )(x).
当F满足以下条件时, (1) F(x1,x2,⋯,xn)在以x_0=(x10,x20,⋯,xn0 )为内点的区域D⊂Rn上连续;(2) F(x10,x20,⋯,xn0 )=0;(3) Fx1,Fx2,⋯,Fxn在D上存在且连续;(4) F_(xj ) (x10,x20,⋯,xn0)≠0(j=1,2,⋯,n).有:(1)存在某U(x0)⊂D,在U(x0)上方程F(x1,x2,⋯,xn )=0唯一确定了一个定义在Qj=(x1...
查看完整答案设函数f:R→R在R/{x0}上有二阶导数,满足:当x∈(-∞,x0)时f' (x)<0<f''(x),而当x∈(x0,+∞)时,f' (x)>0>f''(x),证明:f在x0处不可微.
有一圆柱体底面半径与高随时间变化的速率分别为2cm/s,-3cm/s,当底面半径为10cm,高为5cm时,圆柱体的体积与表面积随时间变化的速率分别为【 】
一卡车沙子通过传送带卸货,假设沙子落到地上堆成一个正圆锥体,且圆锥体的底面半径始终等于圆锥体的高,如果传送带以每分钟3立方米匀速卸沙,问当圆锥达到3米高时,卸了多少时间,此时圆锥高h的增长速度为多少?
设f(x)为可导函数且满足(f(1)-f(1+x))/2x=1,则y=f(x)在(1,f(1))处的斜率为【 】
设函数f(x)在(-∞,+∞)内有定义,对任意x都有f(x+1)=2f(x),且当0≤x≤1时f(x)=x(1-x2),试判断在x=0处函数f(x)是否可导.
设f(x)可导,F(x)=f(x)(1+|sinx|),欲使F(x)在x=0可导,则必有【 】
设当x=0时,f(sinx)= f2(sinx),f'(x)≠0,则f(0)=__________.
已知函数y=f(x)在x=2处连续,且=2求证f(x)在x=2处可导,并求f'(x)=2.
若f(x)在x0的领域内有定义,在x0可导,则f(x)在x0的某领域内连续.
若f(x),g(x)在[a,b]上可导,∀x∈[a,b],f' (x)≤g'(x),则∀x∈[a,b],f(x)≤g(x).