若y=cos , = __________.
总体X的概率分布为P{X=1}=(1-θ)/2,P{X=1}=P{X=3}=(1+θ)/4,利用来自总体X的样本观察值1,3,2,2,1,3,1,2可得θ的最大似然估计值为【 】
设A=(α1,α2,α3,α4)为4阶正交矩阵,若矩阵A = ,β = ,k表示任意常数,则线性方程组Ax=β的通解为x=【 】
设矩阵A=仅有两个不同的特征值.若A相似于对角矩阵,求a,b的值,并求可逆矩阵P,使P-1AP为对角矩阵.
曲线(x2 + y2)2 = x2 - y2 (x≥0,y≥0)与x轴围成的区域为D,求xydxdy.
f(x)满足∫f(x)/dx = 1/6·x2 - x + C,L为曲线y=f(x)(4≤x≤9),L的弧长为s,L绕x轴旋转一周所形成的曲面的面积为A,求s和A.
有一圆柱体底面半径与高随时间变化的速率分别为2cm/s,-3cm/s,当底面半径为10cm,高为5cm时,圆柱体的体积与表面积随时间变化的速率分别为【 】
若y=f(x),有f'(x0)=1/2,则当∆x→0时,该函数在x=x0处的微分dy是【 】
求由方程2y-x=(x-y)ln(x-y)所确定的函数y=y(x)的微分dy.
设函数f:R→R在R/{x0}上有二阶导数,满足:当x∈(-∞,x0)时f' (x)<0<f''(x),而当x∈(x0,+∞)时,f' (x)>0>f''(x),证明:f在x0处不可微.