设二维随机变量(X,Y)在区域D:0<x<1,|y|<x内服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差D(Z).
设二维随机变量(X,Y)在区域D:0<x<1,|y|<x内服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差D(Z).
如图,D的面积为:2×1/2×12=1,所以(X,Y)的概率密度为:f(x,y)= 当x≤0或x≥1时,fX (x)=0;当0<x<1时,fX (x)=f(x,y) dy=1 dx=2x.即关于X的边缘概率密度函数:fX (x)=又E(X)=xfX (x)...
查看完整答案设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为√2的正态分布,而Y服从标准正态分布,试求随机变量Z=2X-Y+3的概率密度函数.
甲乙两个盒子中各装有2个红球和2个白球,先从甲盒中任取一球,观察颜色后放入乙盒中,再从乙盒中任取一球.令X,Y分别表示从甲盒和乙盒中取到的红球个数,则X与Y的相关系数______.
在区间(0,2)上随机取一点,将该区间分成两段,较短的一段长度记为X,较长的一段记为Y,令Z=Y/X.(1) 求X的概率密度;(2) 求Z的概率密度;(3) 求E(X/Y).
随机变量z ~ N(2,32),则y=3z-2的数学期望为【 】
(X,Y)的联合概率分布为试求:(1)DX (2)DY (3)cov(X,Y)
随机变量X密度函数为f(x)=试求:(1)A值 (2)X的分布函数F(x) (3) E=(1/X2 ) (4) D(X)
已知连续随机变量X的概率密度函数为f(x)=,则X的数学期望为______;X的方差为______.
设随机变量X,Y相互独立,其概率密度函数分别为:fX (x)=,fY(y)= 求Z=2X+Y的概率密度函数.
设随机变量X服从均值为10,均方差为0.02的正态分布,已知Φ(x)=du, Φ(2.5)=0.9938,则X落在区间(9.95,10.05)内的概率为______.
设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X-2Y的方差是【 】
设二维随机变量(X,Y)的概率密度为f(x,y)=(Ⅰ)求X与Y的方差;(Ⅱ)X与Y是否相互独立;(Ⅲ)求Z=X²+Y²的概率密度.
设随机变量X~N(0,4),随机变量Y~B(3 ,1/3),且X与Y不相关,则D(X-3Y+1)=【 】
设曲线积分∫Cxy2dx+yφ(x)dy与路径无关,其中φ(x)具有连续的导数,且φ(0)=0,计算xy2dx+yφ(x)dy的值.
将函数f(x)=arctan(1+x)/(1-x)展开为x的幂级数.
假设λ为n阶可逆矩阵A的一个特征值,证明:(1) 1/λ为A-1的特征值;(2) |A|/λ为A的伴随矩阵A*的特征值.
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,7),则该向量组的秩是______.
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解(一般解)必是【 】
设随机变量X1,X2,…,Xn独立同分布,且X1的4阶矩阵存在.设μk=E(X1k)(k=1,2,3,4),则由切比雪夫不等式,对∀ε>0,有P{|1/n Xi2 -μ2 |≥ϵ}≤【 】
设平面区域D由曲线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为________.
设两个随机变量X、Y相互独立,且都服从均值为0、方差为1/2的正态分布,求随机变量|X-Y|的方差.
设X和Y为两个随机变量,且P{X≥0,Y≥0}=3/7,P{X≥0}=P{Y≥0}=4/7,则P{max(X,Y)≥0}=________.
设随机变量X与Y独立,X服从正态分布N(μ,σ2),Y服从[-π,π]上的均匀分布,试求Z=X+Y的概率分布密度(计算结果用标准正态分布函数Φ(x)表示,其中Φ(x)=dt).
设二维随机变量(X,Y)的概率密度为f(x,y)=,求随机变量Z=X+2Y的分布函数.
相互独立的两个随机变量X,Y具有同一分布律,且X的分布律为:X 0 1P 1/2 1/2则随机变量Z=max{X,Y}的分布律为:______________________________.