已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解(一般解)必是【 】
A、k1 α1+k2 (α1+α2 )+(β1-β2)/2
B、k1 α1+k2 (α1-α2 )+(β1+β2)/2
C、k1 α1+k2 (β1+β2 )+(β1-β2)/2
D、k1 α1+k2 (β1-β2 )+(β1+β2)/2
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解(一般解)必是【 】
A、k1 α1+k2 (α1+α2 )+(β1-β2)/2
B、k1 α1+k2 (α1-α2 )+(β1+β2)/2
C、k1 α1+k2 (β1+β2 )+(β1-β2)/2
D、k1 α1+k2 (β1-β2 )+(β1+β2)/2
B
已知f(x)在x=0的某个领域内连续,且f(0)=0,f(x)/(1-cosx)=2,则在点x=0处f(x)【 】
已知函数f(x)具有任意阶导数,且f' (x)=[f(x)]2,则当n为大于2的正整数时,f(x)的n阶导数f(n) (x)等于【 】
设f(x)是连续函数,且F(x)=f(t)dt,则F'(x)等于【 】
已知离散型随机变量X服从参数为2的泊松分布,即P{X=k}=2ke-2/k!,k=0,1,2,…,则随机变量Z=3X-2的期望E(Z)=________.
设随机事件A,B及其和事件A∪B的概率分别是0.4,0.3,0.6,若B ̅表示B的对立事件,那么积事件AB ̅的概率P(AB ̅ )=________.
已知随机变量X的概率密度函数f(x)=1/2 e-|x|,-∞<x<+∞,则X的概率分布函数F(x)=____________.
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,7),则该向量组的秩是______.
设A=(α1,α2,α3,α4)为4阶正交矩阵,若矩阵A = ,β = ,k表示任意常数,则线性方程组Ax=β的通解为x=【 】
设线性方程组Ax=b的系数矩阵A=。(1)试求能使Jacobi迭代法收敛的a的取值范围;(2)对该方程组写出Jacobi迭代格式(设b=(b1,b2,b3)T已知)。
对方程组,试问用Jacobi迭代和Gauss-Seidel迭代是否收敛?为什么?
设f(x)=,则f(x)=0的根为____________.
设A为n阶方阵,A*为A的伴随矩阵且A11≠0,b≠0,其中A11为A的a11对应的代数余子式.证明:AX=b有无穷多个解⟺b是A* X=0的解.
设3阶矩阵A=(α1,α2,α3),B=(β1,β2,β3),若向量组α1,α2,α3可以由向量组β1,β2线性表出,则【 】