设随机事件A,B及其和事件A∪B的概率分别是0.4,0.3,0.6,若B ̅表示B的对立事件,那么积事件AB ̅的概率P(AB ̅ )=________.
设随机事件A,B及其和事件A∪B的概率分别是0.4,0.3,0.6,若B ̅表示B的对立事件,那么积事件AB ̅的概率P(AB ̅ )=________.
0.3
进行一系列独立复生试验,每次成功概率为P,则在成功2次前失败3次的概率为__________。
设A,B为两事件,且P(A)=1/2,P(B)=1/3,P(A│B)=1/6,则P(A ̅│B ̅ )=【 】
甲袋中有2个红球3个白球,乙袋中也有2个红球3个白球,现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取2个球。求最后取出的2个球全是白球的概率。
一个盒子中有4个球,分别标有号码0、1、1、2。现从该盒子中有返回地抽取2个球,设X为两个球上号码的乘积,求:X的分布律。
三个人以相同的概率被分配到4个不同房间中任一间,则前三个房间各有一个人的概率为【 】
若在区间(0,1)内任取两个数,则事件“两数之和小于6/5”的概率为______.
设随机变量X与Y相互独立,且X~B(1,1/3),Y~(2,1/2),则P{X=Y}=______.
已知随机事件A的概率P(A)=0.5,随机事件B的概率P(B)=0.6以及条件概率P(B|A)=0.8,则和事件A∪B的概率P(A∪B)=______.
已知A,B两个事件满足条件P(AB)=P(A ̅B ̅),且P(A)=p,则P(B)=________.
设f(x)是周期为2的周期函数,它在区间(-1,1]上定义为f(x)=,则f(x)的傅里叶级数在x=1处收敛于______.
设4阶矩阵A=(α,γ2,γ3,γ4 ),B=(β,γ2,γ3,γ4),其中α,β,γ2,γ3,γ4均为四维列向量,且已知行列式|A|=4,|B|=1,则行列式|A+B|=________.
n维向量组α1,α2,…,αs (3≤s≤n)线性无关的充要条件是【 】
设f(x)=,f[φ(x)]=1-x,且φ(x)≥0,求φ(x)及其定义域.
设∑为曲面x2+y2+z2=1的外侧,计算曲面积分I=∬∑ x3dydz+y3dzdx+z3dxdy.
设函数f(x)=x2,0≤x<1,而S(x)=bnsinnπx,-∞<x<+∞,其中bn=2f(x)sinnπxdx,x=1,2,3,…,则S(-1/2)等于【 】
将函数f(x)=arctan(1+x)/(1-x)展开为x的幂级数.
假设λ为n阶可逆矩阵A的一个特征值,证明:(1) 1/λ为A-1的特征值;(2) |A|/λ为A的伴随矩阵A*的特征值.
设在三次独立试验中,事件A出现的概率相等,若已知A至少出现一次的概率等于19/27,则事件A在每次试验中出现的概率是______.
设两两相互独立的三事件A,B,C满足条件:ABC=∅,P(A)=P(B)=P(C)<1/2,且已知P(A∪B∪C)=9/16,则P(A)=________.
若微分方程y''+ay'+by=0的解在(-∞,+∞)上有界,则【 】
设空间有界区域Ω中,柱面x²+y²=1与平面z=0和x+z=1围成,Σ为Ω边界的外侧,计算曲面积分I=∰Σ2xzdydz+xzcosydzdy+3yzsinxdxdy
已知α1=,α2=,α3=,记β1=α1,β2=α2 - kβ1,β3=α3 - l1 β1 - l2 β2,若β1,β2,β3 两两正交,则l1,l2依次为【 】
设Σ为空间区域{(x,y,z)|x2 + 4y2≤4,0≤z≤2}表面的外侧,则曲面积分∬Σx2dydz + y2dzdx + z2dxdy=______.