将函数f(x)=arctan(1+x)/(1-x)展开为x的幂级数.
将函数f(x)=arctan(1+x)/(1-x)展开为x的幂级数.
因为f' (x)=1/(1+x2 ),1/(1+u)=(-1)n un,所以f' (x)=1/(1+x2 )=(-1)n x2n (-1<x<1),f(x)=f(0)+f'(x)dx=π...
查看完整答案计算三重积分∭Ω(x+z)dV,其中Ω是由曲面z=与z=所围成的区域.
设曲线积分∫Cxy2dx+yφ(x)dy与路径无关,其中φ(x)具有连续的导数,且φ(0)=0,计算xy2dx+yφ(x)dy的值.
设z=f(2x-y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有连续的二阶偏导数,求∂2z/∂x∂y.
设函数f(x)=x2,0≤x<1,而S(x)=bnsinnπx,-∞<x<+∞,其中bn=2f(x)sinnπxdx,x=1,2,3,…,则S(-1/2)等于【 】
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y''+p(x) y'+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是【 】
已知曲面z=4-x2-y2上点P处的切平面平行于平面2x+2y+z-1=0,则点P的坐标是【 】
设a1,a2,⋯,an是n个实数,都落在区间(-1,1)里.(1)证明 ∏1≤i,j≤n(1+aiaj)/(1-aiaj )≥1(2)找出以上不等式中等号成立的充分必要条件.
函数f(z)=1/(z-1)(z-2)在圆环区域:(1) 0<|z|<1;(2) 1<|z|<2;(3) 2<|z|<+∞;内是处处解析的。试把f(z)在这些区域内展成洛朗级数。
将函数f(x)=1/4 ln(1+x)/(1-x)+1/2 arctanx-x展开成x的幂级数.
设∑为曲面x2+y2+z2=1的外侧,计算曲面积分I=∬∑ x3dydz+y3dzdx+z3dxdy.
设平面L是下半圆周y=-,则曲线积分∫L(x2+y2)ds=________.
向量场u(x,y,z)=xy2i+ye2j+xln(1+z2)k在点P(1,1,0)处的散度divu=________.
设矩阵A=,E=,则逆矩阵(A-2E)-1=________.
已知函数y=y(x)在任意点x处的增量Δy=yΔx/(1+x2)+α,且当Δx→0时,α是∆x(∆x→0)的高阶无穷小,y(0)=π,则y(1)等于【 】
设n为正整数,y=yn (x)是微分方程xy' - (n+1)y=0满足条件yn(1)=1/n(n+1)的解.(1) 求yn (x);(2) 求级数yn(x)的收敛域及和函数.
求级数xn/(ln(n!))的收敛半径,并讨论收敛区间端点的收敛情况.
如函数f(x)在[0,+∞)上一致连续,且无穷积分f(x)dx收敛,证明:f(x)=0.
设f(x)在[0,+∞)上非负连续,n是正整数,若f(x)dx存在,则f(x)dx收敛.
设cn(x)在[0,1]上非负连续(n=1,2,…),cn(x)在[0,1]上一致收敛,令Mn=cn(x),问Mn 是否收敛?用(xn(1-x))/lnn验证上面的结论.
证明:(1)级数 sin(2nπx)/2n 在区间(-∞,+∞)上连续;(2)函数f(x)=sin(2nπx)/2n 在任何区间上不能逐次求导.