计算题(1989年理工数学Ⅰ

计算三重积分∭Ω(x+z)dV,其中Ω是由曲面z=与z=所围成的区域.

答案解析

∭Ω(x+z)dV=∭ΩxdV+∭ΩzdV.由于Ω关于xOy平面对称,被积函数x是奇函数,故∭ΩxdV=0.∭ΩzdV=dθdφρcosφ∙ρ2sinφdρ=2π∙1/2 sin2⁡φ∙1/4=π/...

查看完整答案

讨论

已知u是Ω=[0,1]×[0,1]×[0,1]上的正值连续函数,Ip(u)=(∭Ωupdxdydz)1/p证明:Ip(u)=

求∭Ω(x2+y2+z)dV,其中Ω是由曲线绕z轴旋转一周而成的曲面与平面z=4所围成的立体.

设函数y(x)(x≥0)二阶可导,且y' (x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒为1,求此曲线y=y(x)的方程.

设S为椭球面x2/2+y2/2+z2=1的上半部分,点P(x,y,z)∈S,π为S在P处的切平面,ρ(x,y,z)为点O(0,0,0)到平面π的距离,求∬Sz/(ρ(x,y,z)) dS.

设A,B,C满足:A,B互不相容,A,C互不相容,B,C相互独立,P(A)=P(B)=P(C)=1/3,则P[(B∪C)│(A∪B∪C) ]=__________.

若微分方程y''+ay'+by=0的解在(-∞,+∞)上有界,则【 】

已知向量α1=,α2=,α3=,β=,γ=k1 α1+k2 α2+k3 α3,若γTαi=βTαi (i=1,2,3),则k12+k22+k32=______.

二次型f(x1,x2,x3 ) = (x1 + x2)2 + (x2 + x3)2 - (x3 - x1)2的正惯性指数依次为【 】

设(X1,Y1 ),(X2,Y2 ),…,(Xn,Yn )为来自总体N(μ1,μ2;σ12,σ22;ρ)的简单随机样本. 令θ=μ1 - μ2, X ̅=1/n·Xi ,Y ̅=1/n·Yi ,θ ̂=X ̅ - Y ̅,则【 】

设X1,X2,…,X16为来自总体N(μ,4)的简单随机样本.考虑假设检验问题:H0:μ≤10,H1:μ>10.Φ(x)表示标准正态分布函数,若该检验问题的拒绝域为W={X ̅≥11},其中X ̅=1/16·Xi ,则μ=11.5时,该检验犯第二类错误的概率为【 】