计算I=∭Ω(x2+y2)dV,其中Ω为平面曲线绕z轴旋转一周形成的曲面与平面z=8所围成的区域.
计算I=∭Ω(x2+y2)dV,其中Ω为平面曲线绕z轴旋转一周形成的曲面与平面z=8所围成的区域.
I=dθ r drr2dz=2πr3 (8-r2/2) dr=1024π/3.
设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X-2Y的方差是【 】
设α1=,α2=,α3=,则三条直线a1 x+b1 y+c1=0,a2 x+b2 y+c2=0,a3 x+b3 y+c3=0,(其中ai2+bi2≠0,i=1,2,3)相交于一点的充要条件是【 】
设在区间[a,b]上f(x)>0,f' (x)<0,f''(x)>0,记S1=f(x)dx,S2=f(b)(b-a),S3=1/2[f(a)+f(b)](b-a),则【 】
袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第2个人取行得黄球的概率是________.
对数螺线ρ=eθ在点(ρ,θ)=(eπ/2,π/2)处的切线的直角坐标方程为__________.
计算三重积分∭Ω(x+z)dV,其中Ω是由曲面z=与z=所围成的区域.
设D是xOy平面上以(1,1),(-1,1)和(-1,-1)为顶点的三角形区域,D1是D在第一象限的部分,则∬D(xy+cosxsiny)dxdy等于【 】
求∭Ω(x2+y2+z)dV,其中Ω是由曲线绕z轴旋转一周而成的曲面与平面z=4所围成的立体.
设区域D为x2+y2≤R2,则∬D(x2/a2 +y2/b2 )dxdy=____________.
设函数f(x)在区间[0,1]上连续,并设f(x) dx=A,求dxf(x)f(y)dy.
已知函数f(t)=dxsin(x/y)dy,则f'(π/2)=______.
计算二重积分:∬Dds其中,积分区域D为曲线y(x)=与直线y=0所围成的区域.提示:①首先考察曲线y=y(x)⟹F(x,y)=0为何种曲线,②然后采用“平面极坐标”方法作计算?
计算二重积分∬D3x/(x2+xy3 ) dxdy,D:平面曲线xy=1,xy=3,y2=x,y2=3x所围成的有界闭区域.
求(x2+y2+z2 )2=4(x2+y2-z2)所围立体的体积.
已知u是Ω=[0,1]×[0,1]×[0,1]上的正值连续函数,Ip(u)=(∭Ωupdxdydz)1/p证明:Ip(u)=
求三重积分∭Ω(x2+y2)dxdydz,其中积分区域Ω为x2+y2=2z与z=1围成的区域.
已知V是三个坐标平面以及x+y+2z=1,x+y+2z=2围成的封闭区域,求∭V1/(x+y+2z)2 dV
二次型f(x1,x2,x3 ) = (x1 + x2)2 + (x2 + x3)2 - (x3 - x1)2的正惯性指数依次为【 】
设A,B为随机事件,且0<P(B)<1,下列命题中为假命题的是【 】