积分dxdy=__________.
设函数f(x)=,则函数f[f(x)]=__________.
设a为非零常数,则((x+a)/(x-a))x =________.
过点M(1,2,-1)且与直线垂直的平面方程是__________.
设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为√2的正态分布,而Y服从标准正态分布,试求随机变量Z=2X-Y+3的概率密度函数.
设半径为R的球面Σ的球心在定球面x2+y2+z2=a2 (a>0)上,问当R为何值时,球面Σ在定球面内部的那部分的面积最大?
假设λ为n阶可逆矩阵A的一个特征值,证明:(1) 1/λ为A-1的特征值;(2) |A|/λ为A的伴随矩阵A*的特征值.
证明方程lnx=x/e-dx在区间(0,+∞)内有且仅有两个不同实根.
计算二重积分:∬Dds其中,积分区域D为曲线y(x)=与直线y=0所围成的区域.提示:①首先考察曲线y=y(x)⟹F(x,y)=0为何种曲线,②然后采用“平面极坐标”方法作计算?
计算二重积分∬D3x/(x2+xy3 ) dxdy,D:平面曲线xy=1,xy=3,y2=x,y2=3x所围成的有界闭区域.
计算三重积分∭Ω(x+z)dV,其中Ω是由曲面z=与z=所围成的区域.
设空间区域Ω1:x2+y2+z2≤R2,z≥0,Ω2:x2+y2+z2≤R2,x≥0,y≥0,z≥0,则【 】
已知函数f(t)=dxsin(x/y)dy,则f'(π/2)=______.
求三重积分∭Ω(x2+y2)dxdydz,其中积分区域Ω为x2+y2=2z与z=1围成的区域.
已知V是三个坐标平面以及x+y+2z=1,x+y+2z=2围成的封闭区域,求∭V1/(x+y+2z)2 dV
计算I=∭Ω(x2+y2)dV,其中Ω为平面曲线绕z轴旋转一周形成的曲面与平面z=8所围成的区域.
已知u是Ω=[0,1]×[0,1]×[0,1]上的正值连续函数,Ip(u)=(∭Ωupdxdydz)1/p证明:Ip(u)=
计算∬Ωe(x-y)/(x+y) dΩ,其中Ω:x≥0,y≥0,x+y≤1.
设函数f(x)在区间[0,1]上连续,并设f(x) dx=A,求dxf(x)f(y)dy.
设区域D为x2+y2≤R2,则∬D(x2/a2 +y2/b2 )dxdy=____________.
计算 ∬D(√x+y)dxdy,其中D={(x,y)|0≤x≤1,x≤y≤2x}.
已知函数f(x)=,则dxf(x)f(y-x)dy=__________.
设D是xOy平面上以(1,1),(-1,1)和(-1,-1)为顶点的三角形区域,D1是D在第一象限的部分,则∬D(xy+cosxsiny)dxdy等于【 】
设S为椭球面x2/2+y2/2+z2=1的上半部分,点P(x,y,z)∈S,π为S在P处的切平面,ρ(x,y,z)为点O(0,0,0)到平面π的距离,求∬Sz/(ρ(x,y,z)) dS.
设A,B,C满足:A,B互不相容,A,C互不相容,B,C相互独立,P(A)=P(B)=P(C)=1/3,则P[(B∪C)│(A∪B∪C) ]=__________.