证明方程lnx=x/e-dx在区间(0,+∞)内有且仅有两个不同实根.
证明方程lnx=x/e-dx在区间(0,+∞)内有且仅有两个不同实根.
因为dx=√2 sinxdx=2√2,原方程相当于lnx=x/e-2√2.令F(x)=x/e-2√2-lnx,则F' (x)=1/e-1/x,令F' (x)=0得x=e.当0<x<e时,F' (x)<0,F(x)严格单调减少;当e<x<+∞时,F' (x)>0,F(x)严格单调增加...
查看完整答案设实系数一元n次方程P(x)=a0xn+a1xn-1+…+an-1x+an (a0≠0,n≥2)的根全为实数,证明:方程P′(x)=0的根也全为实数.
若函数f(x)在[a,b]上连续(b>0),在(a,b)内可导,且f(a)=0,证明:存在ξ∈(a,b),使得f'(ξ)=ξf(ξ)/(b-ξ).
设f在[0,1]上连续,在(0,1)上有二阶连续导数,f(0)=f(1)=1,f'' (x)<8,证明:对任意的x∈[0,1],有f(x)>0.
设f(x)在[0,+∞)上连续可导,f(0)=1,且对一切x≥0有|f(x)|≤e-x,求证:∃ξ∈(0,+∞),使得f'(ξ)=e-ξ .
已知f(x)在[a,b]上三次可微,且f(a)=f' (a)=f(b)=0,|f''' (x)|≤M,证明:|f(x) dx|≤M/72 (b-a)4.
设f(x)在(0,1)上可导,在[0,1]上连续,且f(1)-f(0)=2e-1-1.证明:存在ξ∈(0,1),使得eξ^2 f' (ξ)+2ξ3=0.
设函数f(x)在[0,1]上二阶可导,且f(0)=0,f(1)=1,求证:存在ξ∈(0,1),使得ξf″(ξ)+(1+ξ)f’(ξ)=1+ξ.
设函数f(x)在(-∞,+∞)上具有二阶导数,并且f″(x)>0,f′(x)=α>0,f′(x)=β<0,且存在一点x0使得f(x0)<0,证明:方程f(x)=0在(-∞,+∞)上恰有两个实根.
求函数f(x)=x2/(1+x2 )的极值与拐点,并求拐点处的切线方程.
设函数f(x)在开区间(a,b)内存在二阶导数f''(x),且在(a,b)内f''(x)>0,证明:对于任意两点x1,x2∈(a,b),恒有f((x1+x2)/2)≤(f(x1)+f(x2))/2.
曲线y=arctanx在横坐标为1的点处的切线方程是__________;法线方程是____________.
已知f(x)在[a,b]上二阶可导,且f''(x)≤0,证明:f(x)dx≤(b-a)f((a+b)/2).
设函数f(x)在(0,+∞)上连续可导,f(x)存在,f(x)的图形在(0,+∞)是上凸的,求证:f′(x)=0.
当x→0时,x-sinxcosxcos2x与cx4为等价无穷小,则c=__________,k=__________.
当x→0时,1-cosxcos2xcos3x对于无穷小x的阶数等于 __________.
设x0,x1,…,xn为n+1个互异的插值节点,li (x)(i=0,1,…,n)为拉格朗日基本插值多项式(也称为插值基本函数)。证明:(1) li (x)≡1;(2) li (x)xik≡xk.
设f(x)=nx(1-x)n(n为自然数),求(1) f(x)在[0,1]上的最大值M(n)={f(x)}.(2)求M(n).