曲线y=arctanx在横坐标为1的点处的切线方程是__________;法线方程是____________.
曲线y=arctanx在横坐标为1的点处的切线方程是__________;法线方程是____________.
y-π/4=1/2(x-1),y-π/4=-2(x-1)
设y=ln(1+ax),其中a是非零常数,则y'=__________,y''=__________.
将函数f(x)=arctan(1+x)/(1-x)展开为x的幂级数.
计算三重积分∭Ω(x+z)dV,其中Ω是由曲面z=与z=所围成的区域.
设曲线积分∫Cxy2dx+yφ(x)dy与路径无关,其中φ(x)具有连续的导数,且φ(0)=0,计算xy2dx+yφ(x)dy的值.
设z=f(2x-y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有连续的二阶偏导数,求∂2z/∂x∂y.
设函数f(x)=x2,0≤x<1,而S(x)=bnsinnπx,-∞<x<+∞,其中bn=2f(x)sinnπxdx,x=1,2,3,…,则S(-1/2)等于【 】
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y''+p(x) y'+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是【 】
求函数f(x)=x2/(1+x2 )的极值与拐点,并求拐点处的切线方程.
设函数f(x)在开区间(a,b)内存在二阶导数f''(x),且在(a,b)内f''(x)>0,证明:对于任意两点x1,x2∈(a,b),恒有f((x1+x2)/2)≤(f(x1)+f(x2))/2.
设函数f(x)在(0,+∞)上连续可导,f(x)存在,f(x)的图形在(0,+∞)是上凸的,求证:f′(x)=0.
设函数f(x)=ax-blnx(a>0)有两个零点,则b/a的取值范围是【 】
确定函数y=(x+1)/x2 的单调区间、极值、凸凹区间、拐点以及渐近线.
设在区间[a,b]上f(x)>0,f' (x)<0,f''(x)>0,记S1=f(x)dx,S2=f(b)(b-a),S3=1/2[f(a)+f(b)](b-a),则【 】
已知f(x)在[a,b]上二阶可导,且f''(x)≤0,证明:f(x)dx≤(b-a)f((a+b)/2).
在Oxy平面上给定点O(0,0),A(1,0),动点P(x,y)在直线y=x+1上,则当P(x,y)=________时,∠OPA取到最大.
当x→0时,x-sinxcosxcos2x与cx4为等价无穷小,则c=__________,k=__________.
当x→0时,1-cosxcos2xcos3x对于无穷小x的阶数等于 __________.
不查表,求方程x2sin=2x-1977的近似解,精确到0.001.