设函数f(x)=secx在x=0处的2次泰勒多项式为1+ax+bx2,则【 】
A、a=1,b=-1/2
B、a=1,b=1/2
C、a=0,b=-1/2
D、a=0,b=1/2
设函数f(x)=secx在x=0处的2次泰勒多项式为1+ax+bx2,则【 】
A、a=1,b=-1/2
B、a=1,b=1/2
C、a=0,b=-1/2
D、a=0,b=1/2
D
设函数f(x)=ax-blnx(a>0)有两个零点,则b/a的取值范围是【 】
有一圆柱体底面半径与高随时间变化的速率分别为2cm/s,-3cm/s,当底面半径为10cm,高为5cm时,圆柱体的体积与表面积随时间变化的速率分别为【 】
在区间(0,2)上随机取一点,将该区间分成两段,较短的一段长度记为X,较长的一段记为Y,令Z=Y/X.(1) 求X的概率密度;(2) 求Z的概率密度;(3) 求E(X/Y).
已知A=(1) 求正交矩阵P,使得PTAP为对角矩阵;(2) 求正定矩阵C,使得C2 = (a+3)E-A.
设D⊂R2是有界单连通闭区域,I(D)=(4-x2-y2)dxdy取得最大值的积分区域记为D1.(1) 求I(D1 )的值.(2) 计算,其中∂D1是D1的正向边界.
设un(x) = e-nx + xn+1 (n=1,2,…),求级数un(x)的收敛域和函数.
甲乙两个盒子中各装有2个红球和2个白球,先从甲盒中任取一球,观察颜色后放入乙盒中,再从乙盒中任取一球.令X,Y分别表示从甲盒和乙盒中取到的红球个数,则X与Y的相关系数______.
设x>0时,f(x)=,求证:x→0+时,f(x)=e+Ax+Bx2+o(x2),并求A,B之值.
设函数f(x)=sinx/(1+x2)在x=0处的3次泰勒多项式为ax+bx2+cx3,则【 】
设函数f(x)在区间[0,1]上连续,则f(x)dx=【 】
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f''(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点,证明:|f'(c)|≤2a+b/2.
已知f(x)在[a,b]上二阶可导,且f''(x)≤0,证明:f(x)dx≤(b-a)f((a+b)/2).
当x→0时,x-sinxcosxcos2x与cx4为等价无穷小,则c=__________,k=__________.
当x→0时,1-cosxcos2xcos3x对于无穷小x的阶数等于 __________.
已知二次型f(x1,x2,x3 )=3x12+4x22+3x32+2x1 x3,(1)求正交变换x=Qy将f(x1,x2,x3)化为标准形;(2)证明minx≠0f(x)/(xT x)=2.
已知函数f(x)在(0,1)上连续,且f(1)=3ex-1f(x)dx,证明:存在ξ∈(0,1),使得f(ξ)+f'(ξ)=0.
已知f(x)在[a,b]上三次可微,且f(a)=f' (a)=f(b)=0,|f''' (x)|≤M,证明:|f(x) dx|≤M/72 (b-a)4.
设a,b,c,d皆为常数,cd≠0,说明并给出理由,当a,b,c,d满足什么条件时,f(x)=(ax+b)/(cx+d)无极值.
设f(x)在(0,1)上可导,在[0,1]上连续,且f(1)-f(0)=2e-1-1.证明:存在ξ∈(0,1),使得eξ^2 f' (ξ)+2ξ3=0.
求椭圆x2/4+y2=1到直线x+2y-3=0的距离的最小值.
若函数f(x)在[a,b]上连续(b>0),在(a,b)内可导,且f(a)=0,证明:存在ξ∈(a,b),使得f'(ξ)=ξf(ξ)/(b-ξ).