设f(x)在(0,1)上可导,在[0,1]上连续,且f(1)-f(0)=2e-1-1.证明:存在ξ∈(0,1),使得eξ^2 f' (ξ)+2ξ3=0.
已知f''(x)<0,f(0)=0,证明对任何x1>0,x2>0,恒有f(x1+x2)<f(x1)+f(x2)成立.
设在[0,+∞)上函数f(x)有连续导数,且f'(x)≥k>0,f(0)<0,证明:f(x)在(0,+∞)有且仅有一个零点.
设f:[0,1]→[0,1]是一个连续函数,证明:方程2x-f(t)dt=1在[0,1]中有且仅有一个零点.
求证不等式:(eb - ea)/(b-a)<(eb + ea)/2 (a≠b).
证明:若f(x)在区间(a,b)内可导且无界,则其导函数f'(x)在(a,b)内也无界,但反之不然,举出例子.
已知函数f(x)在(0,1)上连续,且f(1)=3ex-1f(x)dx,证明:存在ξ∈(0,1),使得f(ξ)+f'(ξ)=0.
已知f(x)在[a,b]上三次可微,且f(a)=f' (a)=f(b)=0,|f''' (x)|≤M,证明:|f(x) dx|≤M/72 (b-a)4.
设f(x)在[0,+∞)上连续可导,f(0)=1,且对一切x≥0有|f(x)|≤e-x,求证:∃ξ∈(0,+∞),使得f'(ξ)=e-ξ .
作函数y=6/(x2-2x+4),并填写表.单调增加区间:单调减少区间:极值点:极值:凹区间:凸区间:拐点:渐近线:
设函数f(x)在[0,1]上f'' (x)>0,则f' (0),f' (1),f(1)-f(0)或f(0)-f(1)的大小顺序是【 】
曲线y=(t-1)(t-2)dt在点(0,0)处的切线方程是____________.
若3a2-5b<0,则方程x5+2ax3+3bx+4c=0【 】
设f(x)有二阶连续导数,且f' (0)=0,f''(x)/|x|=1,则【 】
确定函数y=(x+1)/x2 的单调区间、极值、凸凹区间、拐点以及渐近线.