已知f''(x)<0,f(0)=0,证明对任何x1>0,x2>0,恒有f(x1+x2)<f(x1)+f(x2)成立.
已知f''(x)<0,f(0)=0,证明对任何x1>0,x2>0,恒有f(x1+x2)<f(x1)+f(x2)成立.
令F(x)=f(x+x2 )-f(x)-f(x2),则F' (x)=f' (x+x2 )-f' (x)=x2 f'' (x+θx2 )<0(0<θ<1).可见,F(x)单调减少,又x...
查看完整答案设函数f(x)在[0,1]上二阶可导,且f(0)=0,f(1)=1,求证:存在ξ∈(0,1),使得ξf″(ξ)+(1+ξ)f’(ξ)=1+ξ.
设函数f(x)在(-∞,+∞)上具有二阶导数,并且f″(x)>0,f′(x)=α>0,f′(x)=β<0,且存在一点x0使得f(x0)<0,证明:方程f(x)=0在(-∞,+∞)上恰有两个实根.
设函数f(x)在闭区间[a,]连续,f(a)=f(b)=0,f'(a)·f'(b)>0,证明:函数f(x)在开区间(a,b)内至少有一个零点。
证明方程lnx=x/e-dx在区间(0,+∞)内有且仅有两个不同实根.
设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).证明:在(a,b)内至少存在一点ξ,使得f' (ξ)>0.
设f(x)在[0,+∞)上连续可导,f(0)=1,且对一切x≥0有|f(x)|≤e-x,求证:∃ξ∈(0,+∞),使得f'(ξ)=e-ξ .
设实系数一元n次方程P(x)=a0xn+a1xn-1+…+an-1x+an (a0≠0,n≥2)的根全为实数,证明:方程P′(x)=0的根也全为实数.
若函数f(x)在[a,b]上连续(b>0),在(a,b)内可导,且f(a)=0,证明:存在ξ∈(a,b),使得f'(ξ)=ξf(ξ)/(b-ξ).
f(x)=1/3 x3+1/2 x2+6x+1的图形在点(0,1)处的切线与x轴的交点坐标是【 】
当x→0时,x-sinxcosxcos2x与cx4为等价无穷小,则c=__________,k=__________.
当x→0时,1-cosxcos2xcos3x对于无穷小x的阶数等于 __________.
设x>0时,f(x)=,求证:x→0+时,f(x)=e+Ax+Bx2+o(x2),并求A,B之值.
设函数f(x)=secx在x=0处的2次泰勒多项式为1+ax+bx2,则【 】
设x0,x1,…,xn为n+1个互异的插值节点,li (x)(i=0,1,…,n)为拉格朗日基本插值多项式(也称为插值基本函数)。证明:(1) li (x)≡1;(2) li (x)xik≡xk.