证明题(1992年理工数学Ⅰ

已知f''(x)<0,f(0)=0,证明对任何x1>0,x2>0,恒有f(x1+x2)<f(x1)+f(x2)成立.

答案解析

令F(x)=f(x+x2 )-f(x)-f(x2),则F' (x)=f' (x+x2 )-f' (x)=x2 f'' (x+θx2 )<0(0<θ<1).可见,F(x)单调减少,又x...

查看完整答案

讨论

设函数f(x)在[0,1]上二阶可导,且f(0)=0,f(1)=1,求证:存在ξ∈(0,1),使得ξf″(ξ)+(1+ξ)f’(ξ)=1+ξ.

设函数f(x)在(-∞,+∞)上具有二阶导数,并且f″(x)>0,f′(x)=α>0,f′(x)=β<0,且存在一点x0使得f(x0)<0,证明:方程f(x)=0在(-∞,+∞)上恰有两个实根.

设f(x)在含节点xi (i=0,…,n)的区间[a,b]上n+1次可微,Pn (x)是f(x)关于给定的n+1个节点的n次插值多项式,证明:对于任意x∈[a,b],存在与x有关的ξ∈(a,b),使得f(x)-Pn (x)=f(n+1) (ξ))/(n+1)!· (x-x0 )(x-x1 )…(x-xn).

设函数f(x)在闭区间[a,]连续,f(a)=f(b)=0,f'(a)·f'(b)>0,证明:函数f(x)在开区间(a,b)内至少有一个零点。

设函数f(x)在闭区间[a,b]上连续,且在(a,b)内有f' (x)>0,证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形的面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形的面积S2的3倍.

证明方程lnx=x/e-dx在区间(0,+∞)内有且仅有两个不同实根.

设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).证明:在(a,b)内至少存在一点ξ,使得f' (ξ)>0.

设f(x)在[0,+∞)上连续可导,f(0)=1,且对一切x≥0有|f(x)|≤e-x,求证:∃ξ∈(0,+∞),使得f'(ξ)=e-ξ .

设实系数一元n次方程P(x)=a0xn+a1xn-1+…+an-1x+an (a0≠0,n≥2)的根全为实数,证明:方程P′(x)=0的根也全为实数.

若函数f(x)在[a,b]上连续(b>0),在(a,b)内可导,且f(a)=0,证明:存在ξ∈(a,b),使得f'(ξ)=ξf(ξ)/(b-ξ).

f(x)=1/3 x3+1/2 x2+6x+1的图形在点(0,1)处的切线与x轴的交点坐标是【 】

当x→0时,x-sinxcosxcos2x与cx4为等价无穷小,则c=__________,k=__________.

当x→0时,1-cosxcos2xcos3x对于无穷小x的阶数等于 __________.

已知 =c(c≠0),求k和c.

设x>0时,f(x)=,求证:x→0+时,f(x)=e+Ax+Bx2+o(x2),并求A,B之值.

=__________.

设函数f(x)=secx在x=0处的2次泰勒多项式为1+ax+bx2,则【 】

去年,张师傅因为多旋圈面爆红,今年他来到了达摩院给扫地僧做面。某天,软件工程师小李跟张师傅吐槽工作。小李主要硏究和设计算法用于调节各种产品的参数。这样的参数一般可以通过极小化Rn上的某个损失函数f求得。在小李最近的一个项目中,这个损失函数是另外一个课题组提供的;出于安全考虑和技术原因,该课题组难以向小李给出此函数的内部细节,而只能提供一个接口用于计算任意x∈Rn处的函数值f(x)。所以,小李必须仅基于函数值来极小化f。而且,每次计算f的值都消耗不小的计算资源。好在该问题的维度n不是很高(10左右)。另外,提供函数的同事还告知小李不妨先假设f是光滑的。这个问题让张师傅想起了自己收藏的一台古董收音机。要在这台收音机上收听一个节目,你需要小心地来回拧一个调频旋钮,同时注意收音效果,直到达到最佳。在这过程中,没有人确切地知道旋钮的角度和收音效果之间的定量关系是什么。张师傅和小李意识到,极小化f不过就是调节一台有多个旋钮的机器:想象x的每一个分量由一个旋钮控制,而f(x)表示这台机器的某种性能,只要我们来回调整每个旋钮,同时监视f的值,应该就有希望找到最佳的x。受此启发,两人一起提出了极小化f的一个迭代算法,并命名为“自动前后调整算法”( Automated Forward/Backward Tuning,AFBT,算法1)。在第k次迭代中,AFBT通过前后调整xk的单个分量得2n个点{xk±tk ei:i=1,…,n},其中tk为步长;然后,令yk为这些点中函数值最小的一个,并检査yk是否使f充分减小;若是,取xk+1=yk,并将步长增倍;否则,令xk+1=xk并将步长减半。在算法1中,ei表示Rn中的第i个坐标向量,它的第i个分量为1,其余皆为0; I(∙) 为指示函数——若f(xk )-f(yk)至少为tk之平方,则I[f(xk )-f(yk )≥tk2]取值为1,否则为0。1自动前后调整算法(AFBT)输入x0∈Rn,t0>0。对k=0,1,2,…,执行以下循环。1:yk≔argmin{f(y):y=xk±tk ei,i=1,…,n} #计算损失函数。2:sk≔I[f(xk )-f(yk )≥tk2] #是否充分下降?是:sk=1;否:sk=0。3:xk+1≔(1-sk ) xk+sk yk #更新迭代点。4:tk+1≔2(2sk-1 ) tk #更新步长。sk=1:步长增倍;sk=0:步长减半。现在,我们对损失函数f:Rn→R作出如下假设。假设1. f为凸函数,即对任何x,y∈Rn与α∈[0,1]都有f((1-α)x+αy)≤(1-α)f(x)+αf(y).假设2. f在Rn上可微且∇f在Rn上 L-Lipschitz连续。假设3. f的水平集有界,即对任意λ∈R,集合{x∈Rn:f(x)≤λ}皆有界。基于假设1与假设2,可以证明〈∇f(x),y-x〉≤f(y)-f(x)≤〈∇f(x),y-x〉+L/2 ‖x-y‖2对任何x,y∈Rn成立;假设1与假设3则保证f在Rn上取到有限的最小值f*。凸函数的更多性质可参考任何一本凸分析教科书。证明题(20分) 在假设1-3下,对于AFBT,证明f(xk)=f*.

设x0,x1,…,xn为n+1个互异的插值节点,li (x)(i=0,1,…,n)为拉格朗日基本插值多项式(也称为插值基本函数)。证明:(1) li (x)≡1;(2) li (x)xik≡xk.

某厂家生产一种产品同时在两个市场上销售,价格分别为P1和P2,销量分别为q1和q2,需求满足下列关系:q1=24-0.2P1;q2=10-0.05P2.成本函数为:C=35+40(q1+q2)试问厂家如何确定两个市场的价格才能使获利最大?最大为多少?