设函数f(x)在[0,1]上二阶可导,且f(0)=0,f(1)=1,求证:存在ξ∈(0,1),使得ξf″(ξ)+(1+ξ)f’(ξ)=1+ξ.
设函数f(x)在[0,1]上二阶可导,且f(0)=0,f(1)=1,求证:存在ξ∈(0,1),使得ξf″(ξ)+(1+ξ)f’(ξ)=1+ξ.
因为f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1)=1,应用拉格朗日中值定理,可知存在c∈(0,1),使得f′(c)==1.令F(x)=exx(f′(x)-1),则F(0)=0,F(c)=0.因F(x)在区间[0,c]上可导,应用罗尔定理,可知存在ξ∈(0,c) ⊂...
查看完整答案设实系数一元n次方程P(x)=a0xn+a1xn-1+…+an-1x+an (a0≠0,n≥2)的根全为实数,证明:方程P′(x)=0的根也全为实数.
设f(x)在[0,+∞)上连续可导,f(0)=1,且对一切x≥0有|f(x)|≤e-x,求证:∃ξ∈(0,+∞),使得f'(ξ)=e-ξ .
设y=y(x)由方程xef(y)=eyln29确定,其中具有二阶导数,f'≠1,则= ____________________.
证明:两条心脏线ρ=α(1+cosθ)与ρ=α(1+cosθ)在交点处的切线相互垂直.
已知函数y=f(x)在x=2处连续,且=2求证f(x)在x=2处可导,并求f'(x)=2.
设当x=0时,f(sinx)= f2(sinx),f'(x)≠0,则f(0)=__________.
设f(x)可导,F(x)=f(x)(1+|sinx|),欲使F(x)在x=0可导,则必有【 】
设函数f(x)在(-∞,+∞)内有定义,对任意x都有f(x+1)=2f(x),且当0≤x≤1时f(x)=x(1-x2),试判断在x=0处函数f(x)是否可导.
若函数f(x)在[a,b]上连续(b>0),在(a,b)内可导,且f(a)=0,证明:存在ξ∈(a,b),使得f'(ξ)=ξf(ξ)/(b-ξ).
设f在[0,1]上连续,在(0,1)上有二阶连续导数,f(0)=f(1)=1,f'' (x)<8,证明:对任意的x∈[0,1],有f(x)>0.
设在[0,+∞)上函数f(x)有连续导数,且f'(x)≥k>0,f(0)<0,证明:f(x)在(0,+∞)有且仅有一个零点.
设f:[0,1]→[0,1]是一个连续函数,证明:方程2x-f(t)dt=1在[0,1]中有且仅有一个零点.
求证不等式:(eb - ea)/(b-a)<(eb + ea)/2 (a≠b).
证明:若f(x)在区间(a,b)内可导且无界,则其导函数f'(x)在(a,b)内也无界,但反之不然,举出例子.
已知函数f(x)在(0,1)上连续,且f(1)=3ex-1f(x)dx,证明:存在ξ∈(0,1),使得f(ξ)+f'(ξ)=0.