证明题(2022年同济大学

设函数f(x)在区间[a,b]上二阶连续可导,且f(a)=f(b)=0,f' (a) f' (b)>0,证明:在开区间(a,b)内存在点x1,x2,x3,使得f(x1)=0,f'(x2)=0,f''(x3)=0.

答案解析

不妨设f' (a)>0,f' (b)>0,∵f(x)在区间[a,b]上二阶连载可导,∴f'(x)在[a,b]上连续,由局部保号性知,∃c,d∈(a,b),使得:当x∈(a,c)时,f' (x)>0⟹f(x)>f(a)=0⟹∃ξ1∈(a,c)使得f(ξ1 )>0;当x∈(d,b)时,f' (x)>0⟹f(x)<f(b)=0⟹∃ξ2∈(d,b)...

查看完整答案

讨论

已知函数f(x)在(0,1)上连续,且f(1)=3ex-1f(x)dx,证明:存在ξ∈(0,1),使得f(ξ)+f'(ξ)=0.

设f(x)在[0,+∞)上连续可导,f(0)=1,且对一切x≥0有|f(x)|≤e-x,求证:∃ξ∈(0,+∞),使得f'(ξ)=e-ξ .

设实系数一元n次方程P(x)=a0xn+a1xn-1+…+an-1x+an (a0≠0,n≥2)的根全为实数,证明:方程P′(x)=0的根也全为实数.

设函数f(x)在[0,1]上二阶可导,且f(0)=0,f(1)=1,求证:存在ξ∈(0,1),使得ξf″(ξ)+(1+ξ)f’(ξ)=1+ξ.

设函数f(x)在(-∞,+∞)上具有二阶导数,并且f″(x)>0,f′(x)=α>0,f′(x)=β<0,且存在一点x0使得f(x0)<0,证明:方程f(x)=0在(-∞,+∞)上恰有两个实根.

设f(x)在含节点xi (i=0,…,n)的区间[a,b]上n+1次可微,Pn (x)是f(x)关于给定的n+1个节点的n次插值多项式,证明:对于任意x∈[a,b],存在与x有关的ξ∈(a,b),使得f(x)-Pn (x)=f(n+1) (ξ))/(n+1)!· (x-x0 )(x-x1 )…(x-xn).

设函数f(x)在闭区间[a,]连续,f(a)=f(b)=0,f'(a)·f'(b)>0,证明:函数f(x)在开区间(a,b)内至少有一个零点。

设函数f(x)在闭区间[0,1]上可微,对[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f'(x)≠1,证明:在(0,1)内有且仅有一个x,使得f(x)=x.

设函数f(x)在闭区间[a,b]上连续,且在(a,b)内有f' (x)>0,证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形的面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形的面积S2的3倍.

证明方程lnx=x/e-dx在区间(0,+∞)内有且仅有两个不同实根.