已知函数f(x)具有任意阶导数,且f' (x)=[f(x)]2,则当n为大于2的正整数时,f(x)的n阶导数f(n) (x)等于【 】
A、n![f(x)]n+1
B、n[f(x)]n+1
C、[f(x)]2n
D、n![f(x)]2n
已知函数f(x)具有任意阶导数,且f' (x)=[f(x)]2,则当n为大于2的正整数时,f(x)的n阶导数f(n) (x)等于【 】
A、n![f(x)]n+1
B、n[f(x)]n+1
C、[f(x)]2n
D、n![f(x)]2n
A
设f(x)是连续函数,且F(x)=f(t)dt,则F'(x)等于【 】
已知离散型随机变量X服从参数为2的泊松分布,即P{X=k}=2ke-2/k!,k=0,1,2,…,则随机变量Z=3X-2的期望E(Z)=________.
设随机事件A,B及其和事件A∪B的概率分别是0.4,0.3,0.6,若B ̅表示B的对立事件,那么积事件AB ̅的概率P(AB ̅ )=________.
已知随机变量X的概率密度函数f(x)=1/2 e-|x|,-∞<x<+∞,则X的概率分布函数F(x)=____________.
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,7),则该向量组的秩是______.
设函数f(x)=,则函数f[f(x)]=__________.
设a为非零常数,则((x+a)/(x-a))x =________.
过点M(1,2,-1)且与直线垂直的平面方程是__________.
设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为√2的正态分布,而Y服从标准正态分布,试求随机变量Z=2X-Y+3的概率密度函数.
一卡车沙子通过传送带卸货,假设沙子落到地上堆成一个正圆锥体,且圆锥体的底面半径始终等于圆锥体的高,如果传送带以每分钟3立方米匀速卸沙,问当圆锥达到3米高时,卸了多少时间,此时圆锥高h的增长速度为多少?
设f(x)为可导函数且满足(f(1)-f(1+x))/2x=1,则y=f(x)在(1,f(1))处的斜率为【 】
若f(x)在x0的领域内有定义,在x0可导,则f(x)在x0的某领域内连续.
若f(x),g(x)在[a,b]上可导,∀x∈[a,b],f' (x)≤g'(x),则∀x∈[a,b],f(x)≤g(x).
设函数g(x)在x=0的领域内有定义,g(0)=g'(0)=0,f(x)=,求f'(0).
设f(x)在[a,b]上单调,证明其变上限积分F(x)=f(t)dt在每一x∈(a,b)的单侧导数F+'(x),F_'(x)均存在.
设函数f(x)在(-∞,+∞)内有定义,对任意x都有f(x+1)=2f(x),且当0≤x≤1时f(x)=x(1-x2),试判断在x=0处函数f(x)是否可导.