已知随机变量X的概率密度函数f(x)=1/2 e-|x|,-∞<x<+∞,则X的概率分布函数F(x)=____________.
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,7),则该向量组的秩是______.
设函数f(x)=,则函数f[f(x)]=__________.
设a为非零常数,则((x+a)/(x-a))x =________.
过点M(1,2,-1)且与直线垂直的平面方程是__________.
设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为√2的正态分布,而Y服从标准正态分布,试求随机变量Z=2X-Y+3的概率密度函数.
设半径为R的球面Σ的球心在定球面x2+y2+z2=a2 (a>0)上,问当R为何值时,球面Σ在定球面内部的那部分的面积最大?
假设λ为n阶可逆矩阵A的一个特征值,证明:(1) 1/λ为A-1的特征值;(2) |A|/λ为A的伴随矩阵A*的特征值.
设随机变量X,Y相互独立,其概率密度函数分别为:fX (x)=,fY(y)= 求Z=2X+Y的概率密度函数.
设随机变量X的概率密度函数为fX(x)=1/(π(1+x2)),求随机变量Y=1-∛X的概率密度函数fY(y).
随机变量ξ在(1,6)上服从均匀分布,则方程x2+ξx+1=0有实根的概率是______.
某车站于每个钟点的第5分钟、25分钟、50分钟发出一班车。假设一个乘客在某个钟点的第X分钟到达车站,且X在[0,60]上均匀分布。请计算该乘客的平均等候时间。
某种原材料一天的消耗量是一个随机变量,概率密度函数为f(x)=,设每天的消耗量是相互独立的,分别求:两天的消耗量X和三天的消耗量Y的概率密度函数。
设随机变量X服从均值为10,均方差为0.02的正态分布,已知Φ(x)=du, Φ(2.5)=0.9938,则X落在区间(9.95,10.05)内的概率为______.
甲乙两个盒子中各装有2个红球和2个白球,先从甲盒中任取一球,观察颜色后放入乙盒中,再从乙盒中任取一球.令X,Y分别表示从甲盒和乙盒中取到的红球个数,则X与Y的相关系数______.
若随机变量X服从均值为2、方差为σ2的正态分布,且P{2<X<4}=0.3,则P{X<0}=________.
设A = aij为3阶矩阵,Aij为代数余子式,若A的每行元素之和均为2,且|A| = 3,A11 + A21 + A31 = ______.
设un(x) = e-nx + xn+1 (n=1,2,…),求级数un(x)的收敛域和函数.
设D⊂R2是有界单连通闭区域,I(D)=(4-x2-y2)dxdy取得最大值的积分区域记为D1.(1) 求I(D1 )的值.(2) 计算,其中∂D1是D1的正向边界.
已知A=(1) 求正交矩阵P,使得PTAP为对角矩阵;(2) 求正定矩阵C,使得C2 = (a+3)E-A.
与两直线及(x+1)/1=(y+2)/2=(z-1)/1都平行且过原点的平面方程为______________.
设L为取正向的圆周x2+y2=9,则曲线积分∮L(2xy-2y)dx+(x2 - 4x)dy=________.