填空题(2021年理工数学Ⅰ

设A = aij为3阶矩阵,Aij为代数余子式,若A的每行元素之和均为2,且|A| = 3,A11 + A21 + A31 = ______.

答案解析

3/2

讨论

设A是2022阶可逆对称实方阵,则A必有2021阶非零主子式

设A=,A*为A的伴随矩阵,则|(1/4 A)-1 - 15A* |=________.

已知二次型f(x1,x2,x3 )=5x12+5x22+cx32-2x1 x2+6x1 x3-6x2 x3的秩为2.(1)求参数c及此二次型对应矩阵的特征值;(2)指出方程f(x1,x2,x3 )=1表示何种二次曲面.

设总体X的概率密度为f(x)=,其中θ>-1是未知参数.X1,X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量.

设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.附表:t分布表 P{t(n)≤t_p (n)}=p

设随机变量X~U(0,3),随机变量Y服从参数为2的泊松分布,且X与Y的协方差为-1,则D(2X-Y+1)=【 】

已知二次型f(x1,x2,x3 )=ijxixj.(1)求二次型矩阵.(2)求正交矩阵Q,使得二次型经正交变换x=Qy化为标准形.(3)求f(x1,x2,x3)=0的解.

设X1,X2,…,Xn为来自均值为θ的指数分布总体的简单随机样本,Y1,Y2,…,Ym为来自均值为2θ的指数分布总体的简单随机样本,且两样本相互独立,其中θ(θ>0)是未知参数.利用样本X1,X2,…,Xn,Y1,Y2,…,Ym求θ的最大似然估计量θ ̂,并求D(θ ̂).

设X1,X2,⋯,Xn为来自总体N(μ1,σ2)的简单随机样本,Y1,Y2,⋯,Ym为来自总体N(μ2,2σ2)的简单随机样本,且两样本相互独立,记X ̅=1/n Xi ,Y ̅=1/m Yi ,S12=1/(n-1) (Xi-X ̅ )2 ,S22=1/(m-1) (Yi-Y ̅ )2 ,则【 】

设X1,X2为来自总体N(μ,σ2)的简单随机样本,其中σ(σ>0)是未知参数.若σ ̂=a|X1-X2 |为σ的无偏估计,则a=【 】