问答题(1997年理工数学Ⅰ

设总体X的概率密度为

f(x)=,其中θ>-1是未知参数.

X1,X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量.

答案解析

总体X的数学期望为E(X)=xf(x) dx=(θ+1) xθ+1 dx=(θ+1)/(θ+2)∙ xθ+2 =(θ+1)/(θ+2).令E(X)=X ̅=(θ+1)/(θ+2),解得θ=(2X ̅-1)/(1-X ̅ ),因此θ的矩法估计量为 θ ̂=(2 1/nXi-1)/(1-1/n Xi ).设x1,x2,…,xn是相应于样本X1,X2,...

查看完整答案

讨论

从学校乘汽车到火车站的途中有3个交通岗,假设在各交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望.

设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.(1)证明B可逆;(2)求AB-1.

已知ξ=是矩阵A=的一个特征向量.(1)试确定参数a,b及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.

设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.

设a1=2,an+1=1/2(an+1/an )(n=1,2,…),证明:(1) an 存在;(2)级数(an/an+1 -1)收敛.

设f(x)连续,φ(x)=f(xt)dt,且f(x)/x=A(A为常数),求φ'(x)并讨论φ'(x)在x=0处的连续性.

设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程∂2z/∂x2+∂2z/∂y2=e2x z,求f(u).

设直线l:在平面π上,且平面π与曲面z=x2+y2相切于点(1,-2,5),求a,b的值.

在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为 N,在 t= 0 时刻已掌握新技术的人数为x0,在任意时刻t 已掌握新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人收和未掌握新技术人数之积成正比,比例常数k>0,求x(t).

计算曲线积分∮C(z-y)dx+(x-z)dy+(x-y)dz,其中C是曲线从z轴正向往z轴负向看,C的方向是顺时针的.